Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Alston, EJ; Sokolik, IN; Kalashnikova, OV (2012). Characterization of atmospheric aerosol in the US Southeast from ground- and space-based measurements over the past decade. ATMOSPHERIC MEASUREMENT TECHNIQUES, 5(7), 1667-1682.

Abstract
This study examines how aerosols measured from the ground and space over the US Southeast change temporally over a regional scale during the past decade. PM2.5 (particulate matter with aerodynamic diameter > 2.5 micrometers) data consist of two datasets that represent the measurements that are used for regulatory purposes by the US EPA (Environmental Protection Agency) and continuous measurements used for quickly disseminating air quality information. AOD (aerosol optical depth) data come from three NASA sensors: the MODIS sensors onboard Terra and Aqua satellites and the MISR sensor onboard the Terra satellite. We analyze all available data over the state of Georgia from 2000-2009 of both types of aerosol data. The analysis reveals that during the summer the large metropolitan area of Atlanta has average PM2.5 concentrations that are 50% more than the remainder of the state. Strong seasonality is detected in both the AOD and PM2.5 datasets, as evidenced by a threefold increase of AOD from mean winter values to mean summer values, and the increase in PM2.5 concentrations is almost twofold over the same period. Additionally, there is agreement between MODIS and MISR onboard the Terra satellite during the spring and summer, having correlation coefficients of 0.64 and 0.71, respectively. Monthly anomalies were used to determine the presence of a trend in all considered aerosol datasets. We found negative linear trends for both the monthly AOD anomalies from MODIS onboard Terra and the PM2.5 datasets, which are statistically significant. Decreasing trends were also found for MISR onboard Terra and MODIS onboard Aqua, but those trends were not statistically significant. The observed decrease in AOD and PM2.5 concentrations may be indicative of the brightening over the study region during the past decade.

DOI:
1867-1381

ISSN:
10.5194/amt-5-1667-2012

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page