Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Michishita, R; Gong, P; Xu, B (2012). Spectral mixture analysis for bi-sensor wetland mapping using Landsat TM and Terra MODIS data. INTERNATIONAL JOURNAL OF REMOTE SENSING, 33(11), 3373-3401.

Abstract
Spatial and temporal resolution is essential for understanding the spatial and temporal characteristics and dynamics of wetland ecosystems. However, single satellite imagery with both high spatial resolution and high temporal frequency is currently unavailable. Instead, the development of a bi-sensor monitoring technique utilizing spatial details of middle-to-high resolution data and temporal details of coarse spatial resolution data is highly desirable. For the initial work on our time-series bi-sensor wetland mapping, the applicability of multiple endmember spectral mixture analysis (MESMA) using single-date bi-sensor imagery with different orbiting periods was investigated. Landsat-5 Thematic Mapper (TM) and Terra Moderate Resolution Image Spectrometer (MODIS) data were utilized in the Poyang Lake area in China and the Great Salt Lake area in the USA to examine three decisive elements in utilizing MESMA: (1) the method of optimal endmember selection; (2) the threshold between two-and three-endmember models; and (3) the treatment of shade fractions. As a result, we found that (1) the number of spectra for an endmember spectrum similar to other endmember spectra meeting the modelling restrictions of maximum and minimum land-cover fractions and root mean square error (RMSE) within a class (In_CoB), the number of spectra for an endmember spectrum similar to other endmember spectra meeting the modelling restrictions outside of a class (Out_CoB), the ratio of In_CoB to Out_CoB multiplied by the inverse number of spectra within the class (CoBI) and the endmember average RMSE (EAR) were optimal endmember selection methods for the TM maps, whereas CoBI, EAR and minimum average spectral angle (MASA) were optimal endmember selection methods for the MODIS maps; (2) the MODIS maps were more sensitive to change in the two-and three-endmember modelling thresholds than the TM maps; and (3) the addition of shade fractions to dark water fractions were an appropriate shade treatment. This research demonstrated how MESMA can be applied for multi-scale mapping of wetland ecosystems, how the difference in observation dates between the TM and MODIS data affects the agreement in land-cover fractions and how spectral similarity between dark water and shade affects the agreement in land-cover fractions.

DOI:
0143-1161

ISSN:
10.1080/01431161.2011.611185

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page