Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Miller, SD; Schmidt, CC; Schmit, TJ; Hillger, DW (2012). A case for natural colour imagery from geostationary satellites, and an approximation for the GOES-R ABI. INTERNATIONAL JOURNAL OF REMOTE SENSING, 33(13), 3999-4028.

'Natural' (or 'true') colour imagery, so-called for its qualitative likeness to colour photography, is one of the most visually intuitive and readily communicable forms of satellite information. It is constructed by combining solar reflectance measurements from three narrow spectral bands defining the red, green and blue wavelengths of visible light. Natural colour facilitates the interpretation of multiple components in the complex earth/atmosphere scene and, therefore, it is widely used by experts and non-experts alike to visualize many forms of geophysical phenomena. Although sensors on board low-Earth-orbiting (LEO) satellites have long-demonstrated the superior quality of natural colour imagery over various other 'false colour' renditions, similar capabilities currently do not exist on sensors operating in geostationary orbits that offer distinct advantages over LEO in terms of high temporal refresh. The Advanced Baseline Imager (ABI) of the next-generation Geostationary Operational Environmental Satellite (GOES)-R series will include the blue and red bands, but is missing the 0.55 mu m green band necessary for producing natural colour. The emphases of this article are twofold. First, we consider the merits of natural colour imagery from the standpoints of both science and operational users, and the philosophical roadblocks of a system definition process that seems inherently ill-equipped to consider qualitative user requirements. Second, we present a mitigation strategy for GOES-R ABI that entails synthesizing the missing ABI green band information via its correlation with spectrally adjacent available bands, with a first-order account for surface type dependencies. The technique is developed, demonstrated and evaluated here using Moderate-resolution Imaging Spectroradiometer (MODIS) data.



NASA Home Page Goddard Space Flight Center Home Page