Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Lafont, S; Zhao, Y; Calvet, JC; Peylin, P; Ciais, P; Maignan, F; Weiss, M (2012). Modelling LAI, surface water and carbon fluxes at high-resolution over France: comparison of ISBA-A-gs and ORCHIDEE. BIOGEOSCIENCES, 9(1), 439-456.

Abstract
The Leaf Area Index (LAI) is a measure of the amount of photosynthetic leaves and governs the canopy conductance to water vapor and carbon dioxide. Four different estimates of LAI were compared over France: two LAI products derived from satellite remote sensing, and two LAI simulations derived from land surface modelling. The simulated LAI was produced by the ISBA-A-gs model and by the ORCHIDEE model (developed by CNRM-GAME and by IPSL, respectively), for the 1994-2007 period. The two models were driven by the same atmospheric variables and used the same land cover map (SAFRAN and ECOCLIMAP-II, respectively). The MODIS and CYCLOPES satellite LAI products were used. Both products were available from 2000 to 2007 and this relatively long period allowed to investigate the interannual and the seasonal variability of monthly LAI values. In particular the impact of the 2003 and 2005 droughts were analyzed. The two models presented contrasting results, with a difference of one month between the average leaf onset dates simulated by the two models, and a maximum interannual variability of LAI simulated at springtime by ORCHIDEE and at summertime by ISBA-A-gs. The comparison with the satellite LAI products showed that, in general, the seasonality was better represented by ORCHIDEE, while ISBA-A-gs tended to better represent the interannual variability, especially for grasslands. While the two models presented comparable values of net carbon fluxes, ORCHIDEE simulated much higher photosynthesis rates than ISBA-A-gs (+70%), while providing lower transpiration estimates (-8%).

DOI:
1726-4170

ISSN:
10.5194/bg-9-439-2012

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page