Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Xiao, ZQ; Wang, JD; Liang, SL; Zhou, HM; Li, XJ; Zhang, LQ; Jiao, ZT; Liu, Y; Fu, Z (2012). Variational retrieval of leaf area index from MODIS time series data: examples from the Heihe river basin, north-west China. INTERNATIONAL JOURNAL OF REMOTE SENSING, 33(3), 730-745.

Abstract
Leaf area index (LAI) products retrieved from observations acquired on one occasion have obvious discontinuity in the time series owing to cloud coverage and other factors, and the accuracy may not meet the needs of many applications. Effectively utilizing data assimilation techniques to retrieve biophysical parameters from the time series of remote-sensing data has attracted special interest. The data assimilation technique is based on a reasonable consideration of dynamic change rules of biophysical parameters and time series observational quantities, thereby improving the quality of retrieved profiles. In this article, a variational assimilation procedure for retrieving LAI from the time series of remote-sensing data is developed. The procedure is based on the formulation of an objective function. A dynamic model is constructed based on the climatology from multi-year Moderate Resolution Imaging Spectroradiometer (MODIS) LAI data to evolve LAI in time, and a radiative transfer model is coupled with the dynamic model to simulate a time series of surface reflectances. A shuffled complex evolution method (developed at the University of Arizona; SCE-UA) optimization algorithm is then used to minimize the objective function and estimate the dynamic model states and the parameters of the coupled model from the MODIS reflectance data with a higher quality in a given time window. The variational assimilation method is applied to the MODIS surface reflectance data for the whole of 2008 at the Heihe river basin to produce regional LAI mapping results. The ground LAI data measured in situ are used to develop algorithms to estimate LAI from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) surface reflectance, and ASTER LAI maps are produced for each ASTER scene using the algorithms developed. Then the ASTER LAI maps are aggregated to compare with the new LAI products. It is found that the variational assimilation method is able to produce temporal continuous LAI products and that accuracy has been improved over the MODIS LAI standard product.

DOI:
0143-1161

ISSN:
10.1080/01431161.2011.577826

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page