Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Liu, YQ; Peters-Lidard, CD; Kumar, S; Foster, JL; Shaw, M; Tian, YD; Fall, GM (2013). Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. ADVANCES IN WATER RESOURCES, 54, 208-227.

Several satellite-based snow products are assimilated, both separately and jointly, into the Noah land surface model for improving snow prediction in Alaska. These include the standard and interpreted versions of snow cover fraction (SCF) data from the Moderate-Resolution Imaging Spectroradiometer (MODIS) and the snow depth (SD) estimates from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). The satellite-based SD estimates are adjusted against in situ observations via statistical interpolation to reduce the potentially large biases, prior to being assimilated using an ensemble Kalman filter. A customized, rule-based direct insertion approach is developed to assimilate the two SCF datasets. Our results indicate that considerable overall improvement on snow prediction can be achieved via assimilating the bias-adjusted satellite SD estimates; however, the improvement does not always translate into improvements in streamflow prediction. Assimilating the standard MODIS SCF is found to have little impact on snow and streamflow predictions, while assimilating the interpreted SCF estimates, which have reduced cloud coverage and improved snow mapping accuracy, has resulted in the most consistent improvements on snow and streamflow predictions across the study domain. (C) 2013 Elsevier Ltd. All rights reserved.



NASA Home Page Goddard Space Flight Center Home Page