Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Mu, SJ; Yang, HF; Li, JL; Chen, YZ; Gang, CC; Zhou, W; Ju, WM (2013). Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia, China. JOURNAL OF GEOGRAPHICAL SCIENCES, 23(2), 231-246.

Abstract
The vegetation coverage dynamics and its relationship with climate factors on different spatial and temporal scales in Inner Mongolia during 2001-2010 were analyzed based on MODIS-NDVI data and climate data. The results indicated that vegetation coverage in Inner Mongolia showed obvious longitudinal zonality, increasing from west to east across the region with a change rate of 0.2/10A degrees N. During 2001-2010, the mean vegetation coverage was 0.57, 0.4 and 0.16 in forest, grassland and desert biome, respectively, exhibiting evident spatial heterogeneities. Totally, vegetation coverage had a slight increasing trend during the study period. Across Inner Mongolia, the area of which the vegetation coverage showed extremely significant and significant increase accounted for 11.25% and 29.13% of the area of whole region, respectively, while the area of which the vegetation coverage showed extremely significant and significant decrease accounted for 7.65% and 26.61%, respectively. On inter-annual time scale, precipitation was the dominant driving force of vegetation coverage for the whole region. On inter-monthly scale, the change of vegetation coverage was consistent with both the change of temperature and precipitation, implying that the vegetation growth within a year is more sensitive to the combined effects of water and heat rather than either single climate factor. The vegetation coverage in forest biome was mainly driven by temperature on both inter-annual and inter-monthly scales, while that in desert biome was mainly influenced by precipitation on both the two temporal scales. In grassland biome, the yearly vegetation coverage had a better correlation with precipitation, while the monthly vegetation coverage was influenced by both temperature and precipitation. In grassland biome, the impacts of precipitation on monthly vegetation coverage showed time-delay effects.

DOI:

ISSN:
1009-637X

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page