Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Gonsamo, A; Chen, JM (2013). Spectral Response Function Comparability Among 21 Satellite Sensors for Vegetation Monitoring. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 51(3), 1319-1335.

Global and regional vegetation assessment strategies often rely on the combined use of multisensor satellite data. Variations in spectral response function (SRF) which characterizes the sensitivity of each spectral band have been recognized as one of the most important sources of uncertainty for the use of multisensor data. This paper presents the SRF differences among 21 Earth observation satellite sensors and their cross-sensor corrections for red, near infrared (NIR), and shortwave infrared (SWIR) reflectances, and normalized difference vegetation index (NDVI) aimed at global vegetation monitoring. The training data set to derive the SRF cross-sensor correction coefficients were generated from the state-of-the-art radiative transfer models. The results indicate that reflectances and NDVI fromdifferent satellite sensors cannot be regarded as directly equivalent. Our approach includes a polynomial regression and spectral curve information generated from a training data set representing a wide dynamics of vegetation distributions to minimize land cover specific SRF cross-sensor correction coefficient variations. The absolute mean SRF caused differences were reduced from 33.9% (20.1%) to 9.4% (6%) for red, from 3.2% (8.9%) to 1% (1.1%) for NIR, from 2.9% (3.6%) to 1.9%(1.6%) for SWIR, and from 7.1%(9%) to 1.8%(1.7%) for NDVI, after applying the SRF cross-sensor correction coefficients on independent top of canopy (top of atmosphere) data for all-embraced-sensor comparisons. Variations in processing strategies, non spectral differences, and algorithm preferences among sensor systems and data streams hinder cross-sensor spectra and NDVI comparability and continuity. The SRF cross-sensor correction approach provided here, however, can be used for studies aiming at large-scale vegetation monitoring with acceptable accuracy.



NASA Home Page Goddard Space Flight Center Home Page