Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Kumar, SV; Peters-Lidard, CD; Mock, D; Tian, YD (2013). Multiscale Evaluation of the Improvements in Surface Snow Simulation through Terrain Adjustments to Radiation. JOURNAL OF HYDROMETEOROLOGY, 14(1), 220-232.

Abstract
The downwelling shortwave radiation on the earth's land surface is affected by the terrain characteristics of slope and aspect. These adjustments, in turn, impact the evolution of snow over such terrain. This article presents a multiscale evaluation of the impact of terrain-based adjustments to incident shortwave radiation on snow simulations over two midlatitude regions using two versions of the Noah land surface model (LSM). The evaluation is performed by comparing the snow cover simulations against the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product. The model simulations are evaluated using categorical measures, such as the probability of detection of "yes" events (PODy), which measure the fraction of snow cover presence that was correctly simulated, and false alarm ratio (FAR), which measures the fraction of no-snow events that was incorrectly simulated. The results indicate that the terrain-based correction of radiation leads to systematic improvements in the snow cover estimates in both domains and in both LSM versions (with roughly 12% overall improvement in PODy and 5% improvement in FAR), with larger improvements observed during snow accumulation and melt periods. Increased contribution to PODy and FAR improvements is observed over the north- and south-facing slopes, when the overall improvements are stratified to the four cardinal aspect categories. A two-dimensional discrete Haar wavelet analysis for the two study areas indicates that the PODy improvements in snow cover estimation drop to below 10% at scales coarser than 16 km, whereas the FAR improvements are below 10% at scales coarser than 4 km.

DOI:

ISSN:
1525-755X

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page