Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Luo, XZ; Chen, XQ; Xu, L; Myneni, R; Zhu, ZC (2013). Assessing Performance of NDVI and NDVI3g in Monitoring Leaf Unfolding Dates of the Deciduous Broadleaf Forest in Northern China. REMOTE SENSING, 5(2), 845-861.

Using estimated leaf unfolding data and two types of Normalized Difference Vegetation Index (NDVI and NDVI3g) data generated from the Advanced Very High Resolution Radiometer (AVHRR) in the deciduous broadleaf forest of northern China during 1986 to 2006, we analyzed spatial, temporal and spatiotemporal relationships and differences between ground-based growing season beginning (BGS) and NDVI (NDVI3g)-retrieved start of season (SOS and SOS3g), and compared effectiveness of NDVI and NDVI3g in monitoring BGS. Results show that the spatial series of SOS (SOS3g) correlates positively with the spatial series of BGS at all pixels in each year (P < 0.001). Meanwhile, the time series of SOS (SOS3g) correlates positively with the time series of BGS at more than 65% of all pixels during the study period (P < 0.05). Furthermore, when pooling SOS (SOS3g) time series and BGS time series from all pixels, a significant positive correlation (P < 0.001) was also detectable between the spatiotemporal series of SOS (SOS3g) and BGS. In addition, the spatial, temporal and spatiotemporal differences between SOS (SOS3g) and BGS are at acceptable levels overall. Generally speaking, SOS3g is more consistent and accurate than SOS in capturing BGS, which suggests that NDVI3g data might be more sensitive than NDVI data in monitoring vegetation leaf unfolding.



NASA Home Page Goddard Space Flight Center Home Page