Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Yeom, JM; Kim, HO (2013). Feasibility of using Geostationary Ocean Colour Imager (GOCI) data for land applications after atmospheric correction and bidirectional reflectance distribution function modelling. INTERNATIONAL JOURNAL OF REMOTE SENSING, 34(20), 7329-7339.

Korea's Geostationary Ocean Colour Imager (GOCI) has very high temporal resolution as well as wide spatial coverage. There is thus great interest in testing its applicability for monitoring land areas in addition to ocean areas. GOCI has eight spectral bands, from blue to near-infrared. These bands can be sensitive to vegetation change, but their wavelength ranges are slightly different from those of the extensively studied Moderate Resolution Imaging Spectroradiometer (MODIS). This study examines whether GOCI data can be applied for land monitoring and how GOCI data should be processed so as to reflect the spectral characteristics of land surfaces as detected by polar-orbit satellite sensors. Several image processing steps were performed for the GOCI data, including atmospheric correction and semi-empirical bidirectional reflectance distribution function modelling, before the results were compared with the MODIS land-surface product. Among the four GOCI normalized difference vegetation index (NDVI) products tested in this study, the GOCI NDVI with viewing-angle-adjusted reflectance showed the best agreement with MODIS NDVI calculated from normalized reflectance, with the lowest root mean square error of 0.126. Additionally, its temporal trends over forest and mixed vegetation areas were similar to those of MODIS NDVI during the study period from September to December.



NASA Home Page Goddard Space Flight Center Home Page