Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Pfeifer, M; Platts, PJ; Burgess, ND; Swetnam, RD; Willcock, S; Lewis, SL; Marchant, R (2013). Land use change and carbon fluxes in East Africa quantified using earth observation data and field measurements. ENVIRONMENTAL CONSERVATION, 40(3), 241-252.

Abstract
Carbon-based forest conservation requires the establishment of 'reference emission levels' against which to measure a country or region's progress in reducing their carbon emissions. In East Africa, landscape-scale estimates of carbon fluxes are uncertain and factors such as deforestation poorly resolved due to a lack of data. In this study, trends in vegetation cover and carbon for East Africa were quantified using moderate-resolution imaging spectroradiometer (MODIS) land cover grids from 2002 to 2008 (500-m spatial resolution), in combination with a regional carbon look-up table. The inclusion of data on rainfall and the distribution of protected areas helped to gauge impacts on vegetation burning (assessed using 1-km spatial resolution MODIS active fire data) and biome trends. Between 2002 and 2008, the spatial extents of forests, woodlands and scrublands decreased considerably and East Africa experienced a net carbon loss of 494 megatonnes (Mt). Most countries in the area were sources of carbon emissions, except for Tanzania and Malawi, where the areal increase of savannah and woodlands counterbalanced carbon emissions from deforestation. Both Malawi and Tanzania contain large areas of planted forest. Vegetation burning was correlated with rainfall (forest only) and differed depending on land management. Freely available global earth observation products have provided ways to achieve rapid assessment and monitoring of carbon change hotspots at the landscape scale.

DOI:
10.1017/S0376892912000379

ISSN:

NASA Home Page Goddard Space Flight Center Home Page