Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Huang, B; Wang, J; Song, HH; Fu, DJ; Wong, K (2013). Generating High Spatiotemporal Resolution Land Surface Temperature for Urban Heat Island Monitoring. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 10(5), 1011-1015.

Abstract
Land surface temperature (LST) retrieved from Landsat thermal infrared bands has been proved to have the most suitable spatial resolution for urban thermal environment studies, i.e., 60 m for Enhanced Thematic Mapper Plus (ETM+) and 120 m for Thematic Mapper (TM). However, its long revisit cycle (or low temporal resolution) coupled with cloud contamination has largely limited its application in urban environments. This letter presents a spatiotemporal image fusion model to produce high spatiotemporal resolution LST data, by combining the high spatial resolution of Landsat images and the frequent coverage of Moderate Resolution Imaging Spectroradiometer (MODIS) images. Taking into consideration light reflection and refraction among ground objects and the continuity of LST in the temperature space in urban areas, a spatiotemporal image fusion model based on bilateral filtering has been proposed. The main contribution of this model is that it accounts for the warming and cooling effect of ground objects in urban areas and establishes a new weight function to account for the effect of neighboring pixels. The proposed method is tested using four pairs of LST from Landsat ETM+ and MODIS on February 15, March 19, October 13, and November 14 in 2002, covering the center of Beijing, and the results show that our method is capable of generating dense time-series LST data by combining the strengths of the MODIS and Landsat images. Our method is also compared with a state-of-the-art method, and the better performance of our system in generating high spatiotemporal resolution LST is demonstrated.

DOI:
10.1109/LGRS.2012.2227930

ISSN:

NASA Home Page Goddard Space Flight Center Home Page