Skip all navigation and jump to content Jump to site navigation
NASA Logo - Goddard Space Flight Center

+ NASA Homepage

    
Goddard Space Flight Center
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Xu, XJ; Zhou, GM; Liu, SG; Du, HQ; Mo, LF; Shi, YJ; Jiang, H; Zhou, YF; Liu, EB (2013). Implications of ice storm damages on the water and carbon cycle of bamboo forests in southeastern China. AGRICULTURAL AND FOREST METEOROLOGY, 177, 35-45.

Abstract
Extreme climate events have significant impacts on carbon and water exchanges between forest ecosystems and the atmosphere. Quantification of extreme climate event effects on carbon and water exchanges of forests can improve our understanding of the feedbacks between the terrestrial ecosystem and the atmosphere in the context of global change. This study analyzes the impacts of the early 2008 ice storm that occurred in southeastern China. The impacts on the Gross Primary Production (GPP) and Evapotranspiration (ET) of Moso bamboo forests were analyzed using ecosystem models, MODerate resolution Imaging Spectroradiometer (MODIS) data, and Eddy Covariance flux tower measurements. Interannual differences in GPP and ET were divided into three parts: (1) environmental-dependent, (2) biophysical-dependent, and (3) ice storm damage-dependent. Our results showed that the GPP and ET of Moso bamboo forests were accurately predicted using the remote sensing-driven Penman-Monteith (RS-PM) and Eddy Covariance Light Use Efficiency (EC-LUE) models, respectively. The early 2008 ice storm caused a slight decrease in annual ET and GPP, mainly during the ice storm. Plant transpiration had a slight decrease, but soil (background) evaporation increased because of the reduction in Leaf Area Index (LAI) caused by ice storm effects. This ice storm decreased annual mean GPP by 0.17 g C m(-2) d(-1) (roughly 3% of average GPP in 2008) since the fraction of photosynthetically active radiation (FPAR) approached to zero because of ice and snow cover effects. Ice storm damage effects on ET and GPP for the off-year (the year with few new shoot production) were slightly greater than those for the on-year (the year with many new shoot production) due to their different growth characteristics. The time for bamboo forest recovery (1-2 years) from ice storm damage was quite short. (C) 2013 Elsevier B.V. All rights reserved.

DOI:
10.1016/j.agrformet.2013.04.005

ISSN:

FirstGov logo Privacy Policy and Important Notices NASA logo

Curator: Brandon Maccherone
NASA Official: Shannell Frazier

NASA Home Page Goddard Space Flight Center Home Page