Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Langer, M; Westermann, S; Heikenfeld, M; Dorn, W; Boike, J (2013). Satellite-based modeling of permafrost temperatures in a tundra lowland landscape. REMOTE SENSING OF ENVIRONMENT, 135, 12-24.

Abstract
Remote sensing offers great potential for detecting changes of the thermal state of permafrost and active layer dynamics in the context of Arctic warming. This study presents a comprehensive feasibility analysis of satellite-based permafrost modeling for a typical lowland tundra landscape in the Lena River Delta, Siberia. We assessed the performance of a transient permafrost model which is forced by time series of land surface temperatures (LSTs) and snow water equivalents (SWEs) obtained from MODIS and GlobSnow products. Both the satellite products and the model output were evaluated on the basis of long-term field measurements from the Samoylov permafrost observatory. The model was found to successfully reproduce the evolution of the permafrost temperature and freeze-thaw dynamics when calibrated with ground measurements. Monte-Carlo simulations were performed in order to evaluate the impact of inaccuracies in the model forcing and uncertainties in the parameterization. The sensitivity analysis showed that a correct SWE forcing and parameterization of the snow's thermal properties are essential for reliable permafrost modeling. In the worst case, the bias in the modeled permafrost temperatures can amount to 5 degrees C. For the thaw depth, a maximum uncertainty of about +/- 15 cm is found due to possible uncertainties in the soil composition. (C) 2013 Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2013.03.011

ISSN:

NASA Home Page Goddard Space Flight Center Home Page