Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Ashpole, I; Washington, R (2013). A new high-resolution central and western Saharan summertime dust source map from automated satellite dust plume tracking. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 118(13), 6981-6995.

Abstract
In this paper, we outline a new objective dust source detection method for the central and western Sahara (CWS), based on the automated tracking of individual dust plumes in data from the Spinning Enhanced Visible and Infrared Imager, available every 15 mins. at similar to 0.03 degrees spatial resolution. The method is used to map the origin of summertime dust storms in the CWS for June - August 2004 - 2010. It reveals the sources of these events in unprecedented detail, allowing for the identification of specific, highly active source areas. The study of collocated surface features reveals that many of the dominant sources are likely associated with paleolakes and outwash plains, many in close proximity to the Saharan mountains. Extensive nonsource areas are associated with low albedo and elevated terrain, pointing to the mountainous regions of the Sahara. Additionally, sand seas are not identified as important source areas, but their margins sometimes are. The automated tracking method also facilitates analysis of the transport direction of dust plumes from key source regions and the inference of emission mechanisms. It is found that there are two broad domains within the CWS: one in southwest Algeria and northwest Mali, characterized primarily by transport toward the southwest and very likely dominated by low-level jets embedded in the northeasterly Harmattan winds; and a second in southern Algeria, northwest Niger, and northeast Mali where there is no preferred transport direction and a strong potential association between dust events and deep convection, pointing toward cold pool outflows as the likely deflation mechanism.

DOI:
10.1002/jgrd.50554

ISSN:

NASA Home Page Goddard Space Flight Center Home Page