Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Qi, YL; Ge, JM; Huang, JP (2013). Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET. CHINESE SCIENCE BULLETIN, 58(20), 2497-2506.

Abstract
Aerosol optical depths (AODs) from MODIS and MISR onboard the Terra satellite are assessed by comparison with measurements from four AERONET sites located in northern China for the period 2006-2009. The results show that MISR performs better than MODIS at the SACOL and Beijing sites. For the Xianghe and Xinglong sites, MODIS AOD retrievals are better than those of MISR. Overall, the relative error of the Angstrom exponent from MISR compared with AERONET is about 14%, but the MODIS error can reach 30%. Thus, it may be better to use the MISR Angstrom exponent to derive wavelength-dependent AOD values when calculating the aerosol radiative forcing in a radiative transfer model. Seasonal analysis of AOD over most of China shows two main areas with high aerosol loading: the Taklimakan Desert region and the southern part of North China and northern part of East China. The locations of these two areas of high aerosol loading do not change with season, but the AOD values have significant seasonal variation. The largest AOD value in the Taklimakan appears in spring when the Angstrom exponents are the lowest, which means the particle radii are relatively large. Over North and East China, the highest aerosol loading appears in summer. The aerosol particles are smallest in summer over both high-AOD areas.

DOI:
10.1007/s11434-013-5678-5

ISSN:

NASA Home Page Goddard Space Flight Center Home Page