Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link



Lu, XQ; Wang, YL; Yuan, Y (2013). Graph-Regularized Low-Rank Representation for Destriping of Hyperspectral Images. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 51(7), 4009-4018.

Hyperspectral image destriping is a challenging and promising theme in remote sensing. Striping noise is a ubiquitous phenomenon in hyperspectral imagery, which may severely degrade the visual quality. A variety of methods have been proposed to effectively alleviate the effects of the striping noise. However, most of them fail to take full advantage of the high spectral correlation between the observation subimages in distinct bands and consider the local manifold structure of the hyperspectral data space. In order to remedy this drawback, in this paper, a novel graph-regularized low-rank representation (LRR) destriping algorithm is proposed by incorporating the LRR technique. To obtain desired destriping performance, two sides of performing destriping are included: 1) To exploit the high spectral correlation between the observation subimages in distinct bands, the technique of LRR is first utilized for destriping, and 2) to preserve the intrinsic local structure of the original hyperspectral data, the graph regularizer is incorporated in the objective function. The experimental results and quantitative analysis demonstrate that the proposed method can both remove striping noise and achieve cleaner and higher contrast reconstructed results.



NASA Home Page Goddard Space Flight Center Home Page