Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Zhou, Liming; Tian, Yuhong; Myneni, Ranga B.; Ciais, Philippe; Saatchi, Sassan; Liu, Yi Y.; Piao, Shilong; Chen, Haishan; Vermote, Eric F.; Song, Conghe; Hwang, Taehee (2014). Widespread decline of Congo rainforest greenness in the past decade. NATURE, 509(7498), 86-0.

Abstract
Tropical forests are global epicentres of biodiversity and important modulators of climate change(1), and are mainly constrained by rainfall patterns(1-3). The severe short-term droughts that occurred recently in Amazonia have drawn attention to the vulnerability of tropical forests to climatic disturbances(4-9). The central African rainforests, the second-largest on Earth, have experienced a long-term drying trend(10,11) whose impacts on vegetation dynamics remain mostly unknown because in situ observations are very limited. The Congolese forest, with its drier conditions and higher percentage of semi-evergreen trees(12,13), may be more tolerant to short-term rainfall reduction than are wetter tropical forests(11), but for a long-term drought there may be critical thresholds of water availability below which higher-biomass, closed-canopy forests transition to more open, lower-biomass forests(1,2,14). Here we present observational evidence for a widespread decline in forest greenness over the past decade based on analyses of satellite data (optical, thermal, microwave and gravity) from several independent sensors over the Congo basin. This decline in vegetation greenness, particularly in the northern Congolese forest, is generally consistent with decreases in rainfall, terrestrial water storage, water content in aboveground woody and leaf biomass, and the canopy backscatter anomaly caused by changes in structure and moisture in upper forest layers. It is also consistent with increases in photosynthetically active radiation and land surface temperature. These multiple lines of evidence indicate that this large-scale vegetation browning, or loss of photosynthetic capacity, may be partially attributable to the long-term drying trend. Our results suggest that a continued gradual decline of photosynthetic capacity and moisture content driven by the persistent drying trend could alter the composition and structure of the Congolese forest to favour the spread of drought-tolerant species(1,2,14).

DOI:
10.1038/nature13265

ISSN:
0028-0836; 1476-4687

NASA Home Page Goddard Space Flight Center Home Page