Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Chen, Yang; Yuan, Wenping; Xia, Jiangzhou; Fisher, Joshua B.; Dong, Wenjie; Zhang, Xiaotong; Liang, Shunlin; Ye, Aizhong; Cai, Wenwen; Feng, Jinming (2015). Using Bayesian model averaging to estimate terrestrial evapotranspiration in China. JOURNAL OF HYDROLOGY, 528, 537-549.

Abstract
Evapotranspiration (ET) is critical to terrestrial ecosystems as it links the water, carbon, and surface energy exchanges. Numerous ET models were developed for the ET estimations, but there are large model uncertainties. In this study, a Bayesian Model Averaging (BMA) method was used to merge eight satellite-based models, including five empirical and three process-based models, for improving the accuracy of ET estimates. At twenty-three eddy covariance flux towers, we examined the model performance on all possible combinations of eight models and found that an ensemble with four models (BMA_Best) showed the best model performance. The BMA_Best method can outperform the best of eight models, and the Kling-Gupta efficiency (KGE) value increased by 4% compared with the model with the highest KGE, and decreased RMSE by 4%. Although the correlation coefficient of BMA_Best is less than the best single model, the bias of BMA_Best is the smallest compared with the eight models. Moreover, based on the water balance principle over the river basin scale, the validation indicated the BMA_Best estimates can explain 86% variations. In general, the results showed BMA estimates will be very useful for future studies to characterize the regional water availability over long-time series. (C) 2015 Elsevier B.V. All rights reserved.

DOI:
10.1016/j.jhydrol.2015.06.059

ISSN:
0022-1694

NASA Home Page Goddard Space Flight Center Home Page