Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Tsutsumida, Narumasa; Comber, Alexis J. (2015). Measures of spatio-temporal accuracy for time series land cover data. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 41, 46-55.

Abstract
Remote sensing is a useful tool for monitoring changes in land cover over time. The accuracy of such time-series analyses has hitherto only been assessed using confusion matrices. The matrix allows global measures of user, producer and overall accuracies to be generated, but lacks consideration of any spatial aspects of accuracy. It is well known that land cover errors are typically spatially auto-correlated and can have a distinct spatial distribution. As yet little work has considered the temporal dimension and investigated the persistence or errors in both geographic and temporal dimensions. Spatio-temporal errors can have a profound impact on both change detection and on environmental monitoring and modelling activities using land cover data. This study investigated methods for describing the spatiotemporal characteristics of classification accuracy. Annual thematic maps were created using a random forest classification of MODIS data over the Jakarta metropolitan areas for the period of 2001-2013. A logistic geographically weighted model was used to estimate annual spatial measures of user, producer and overall accuracies. A principal component analysis was then used to extract summaries of the multitemporal accuracy. The results showed how the spatial distribution of user and producer accuracy varied over space and time, and overall spatial variance was confirmed by the principal component analysis. The results indicated that areas of homogeneous land cover were mapped with relatively high accuracy and low variability, and areas of mixed land cover with the opposite characteristics. A multi-temporal spatial approach to accuracy is shown to provide more informative measures of accuracy, allowing map producers and users to evaluate time series thematic maps more comprehensively than a standard confusion matrix approach. The need to identify suitable properties for a temporal kernel are discussed. (C) 2015 Elsevier B.V. All rights reserved.

DOI:
10.1016/j.jag.2015.04.018

ISSN:
0303-2434

NASA Home Page Goddard Space Flight Center Home Page