Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Shi, Yingni; Zhou, Xuan; Yang, Xiaofeng; Shi, Lijian; Ma, Sheng (2015). Merging Satellite Ocean Color Data With Bayesian Maximum Entropy Method. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 8(7), 3294-3304.

Abstract
Merging multiple satellite ocean color data is one of the ways to create a unified ocean color product and improve the spatial coverage. In this paper, the Bayesian maximum entropy (BME), a probabilistic method, is used to integrate chlorophyll-a (chl-a) concentration data obtained by the seaviewing wide field-of-view sensor (SeaWiFS) on Orbview-2, the medium-resolution imaging spectrometer instrument (MERIS) on ENVISAT and the moderate-resolution imaging spectroradiometer (MODIS) on Aqua. MODIS chl-a concentration on current day is considered as the accurate hard data. A probabilistic model is developed to link hard data and chl-a concentration of other sensors on previous days. The latter are processed as soft data by this probabilistic model to take into account the differences between mission-specific products. The semivariogram of chl-a concentration, which presents the spatial variability and provides a priori knowledge, is developed to improve the spatial coverage. The average daily coverage of the merged chl-a field is 74% for the 1-day temporal integration which is about six times higher than any single mission, and 95% for the 3-day temporal integration which achieves basically a complete global coverage. Root-mean-square error (RMSE) and correlation between in situ chl-a measurements and the BME-merged chl-a from 1-day data are 0.42 and 0.72, and from 3-day data are 0.44 and 0.70, respectively. Compared with the existing GSM method and the weighted averaging (AVW) method, the BME method can greatly improve the spatial coverage and preserve the high accuracy, which demonstrates the potential advantages of the BME method to merge ocean color products from multiple sensors.

DOI:
10.1109/JSTARS.2015.2425691

ISSN:
1939-1404

NASA Home Page Goddard Space Flight Center Home Page