Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Wu, Bingfang; Gommes, Rene; Zhang, Miao; Zeng, Hongwei; Yan, Nana; Zou, Wentao; Zheng, Yang; Zhang, Ning; Chang, Sheng; Xing, Qiang; van Heijden, Anna (2015). Global Crop Monitoring: A Satellite-Based Hierarchical Approach. REMOTE SENSING, 7(4), 3907-3933.

Abstract
Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China) and \'sub-countries\' (for the nine largest countries). The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI), Vegetation Condition Index (VCI), Cropped Arable Land Fraction (CALF) as well as Cropping Intensity (CI). Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI), cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion). Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly \'CropWatch bulletin\' which provides accurate and timely information essential to food producers, traders and consumers.

DOI:
10.3390/rs70403907

ISSN:
2072-4292

NASA Home Page Goddard Space Flight Center Home Page