Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Cho, A-Ra; Choi, Youn-Young; Suh, Myoung-Seok (2015). Improvements of a COMS Land Surface Temperature Retrieval Algorithm Based on the Temperature Lapse Rate and Water Vapor/Aerosol Effect. REMOTE SENSING, 7(2), 1777-1797.

Abstract
The National Meteorological Satellite Center in Korea retrieves land surface temperature (LST) by applying the split-window LST algorithm (CSW_v1.0) to Communication, Ocean, and Meteorological Satellite (COMS) data. Considerable errors were detected under conditions of high water vapor content or temperature lapse rates during validation with Moderate Resolution Imaging Spectroradiometer (MODIS) LST because of the too simplified LST algorithm. In this study, six types of LST retrieval equations (CSW_v2.0) were developed to upgrade the CSW_v1.0. These methods were developed by classifying \'dry,\' \'normal,\' and \'wet\' cases for day and night and considering the relative sizes of brightness temperature difference (BTD) values. Similar to CSW_v1.0, the LST retrieved by CSW_v2.0 had a correlation coefficient of 0.99 with the prescribed LST and a slightly larger bias of -0.03 K from 0.00K; the root mean square error (RMSE) improved from 1.41 K to 1.39 K. In general, CSW_v2.0 improved the retrieval accuracy compared to CSW_v1.0, especially when the lapse rate was high (mid-day and dawn) and the water vapor content was high. The spatial distributions of LST retrieved by CSW_v2.0 were found to be similar to the MODIS LST independently of the season, day/night, and geographic locations. The validation using one year's MODIS LST data showed that CSW_v2.0 improved the retrieval accuracy of LST in terms of correlations (from 0.988 to 0.989), bias (from -1.009 K to 0.292 K), and RMSEs (from 2.613 K to 2.237 K).

DOI:
10.3390/rs70201777

ISSN:
2072-4292

NASA Home Page Goddard Space Flight Center Home Page