Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Roberts, Dar A.; Dennison, Philip E.; Roth, Keely L.; Dudley, Kenneth; Hulley, Glynn (2015). Relationships between dominant plant species, fractional cover and Land Surface Temperature in a Mediterranean ecosystem. REMOTE SENSING OF ENVIRONMENT, 167, 152-167.

Abstract
The Hyperspectral Infrared Imager (HyspIRI) is a proposed satellite mission that combines a 60 m spatial resolution Visible-Shortwave Infrared (VSWIR) imaging spectrometer and a 60 m multispectral thermal infrared (TIR) scanner. HyspIRI would combine the established capability of a VSWIR sensor to discriminate plant species and estimate accurate cover fractions with improved Land Surface Temperatures (LST) retrieved from the TIR sensor. We evaluate potential synergies between Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) maps of dominant plant species and mixed species assemblages, fractional cover, and MODIS/ASTER Airborne Simulator (MASTER) LST utilizing multiple flight lines acquired in July 2011 in the Santa Barbara, California area. Species composition and green vegetation (GV), non-photosynthetic vegetation (NPV), impervious, and soil cover fractions were mapped using Multiple Endmember Spectral Mixture Analysis with a spectral library derived from 7.5 m imagery. Temperature-Emissivity Separation (TES) was accomplished using the MASTER TES algorithm. Pixel-based accuracy exceeded 50% for 23 species and land cover classes and approached 75% based on pixel majority in reference polygons. An inverse relationship was observed between CV fractions and LST. This relationship varied by dominant plant species/vegetation class, generating unique LST GV clusters. We hypothesize clustering is a product of environmental controls on species distributions, such as slope, aspect, and elevation as well as species-level differences in canopy structure, rooting depth, water use efficiency, and available soil moisture, suggesting that relationships between LST and plant species will vary seasonally. The potential of HyspIRI as a means of providing these seasonal relationships is discussed. (C) 2015 Elsevier Inc. All rights reserved.

DOI:
10.1016/j.rse.2015.01.026

ISSN:
0034-4257

NASA Home Page Goddard Space Flight Center Home Page