

MODIS OCEAN VALIDATION

Ocean Accuracy Goals

```
• Water - leaving Radiance \pm 5% (0.4 - 0.7 m)
```

```
• Chlor ophyll a ± 35% (.01-50 mg m-3)
```

• Sea Surface Temper ature \pm 0.3 K

Sea Surface Temperature

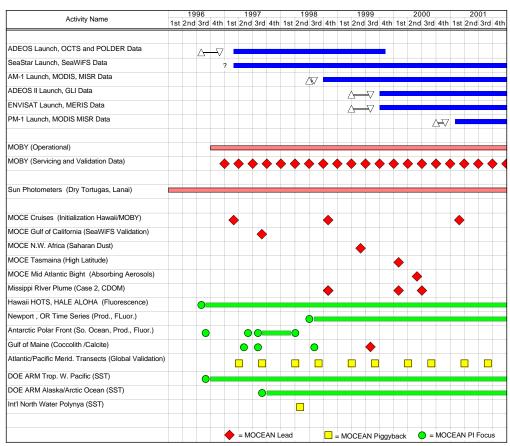
- Goal SST \pm 0.3 K
- Primary Bands 20, 31, 32
- Augmented with improved water vapor, cloud detection
- Focus on SS Brightness Temperature

Sea Surface Temperature Validation

- Top of Atmosphere Radiances
 - Comparisons with satellites, aircraft sensors
 - AVHRR, ATSR, OCTS, GLI
 - Modeling
- Sea Surface Brightness Temperatures
 - Focus Studies ships, A/C, platform
 - M-AERI Observations (Marine Atmospheric Emitted Radiation Interferometer)
 - Aircraft Sensors (MAS, HIS)
- Global Bulk Temperature Fields
 - Mooring and Drifting Buoy Observations
 - WOCE-TOGA

Ocean Color Validation

- Validation of Atmospheric Correction
 - Sensor characteristics & calibration
 - Marine Aerosols
 - Continental Aerosols
 - Absorbing Aerosols (Lidars)
 - Whitecaps and Foam
 - Glitter
- Water-Leaving Radiance (Reflectance)
 - Basis for all bio-optical algorithms


Ocean Color Validation (cont.)

- Bio-optical Properties
 - Chlorophyll a
 - Colored Dissolved Organic Matter
 - Sediments
 - Phytoplankton Absorption
 - Regional, temporal bias identification
 - k -490
 - Phycoerythrin
 - Coccoliths, CaCO3
 - Natural Chlorophyll Fluorescence, Fluorescence Efficiency
- Primary Production Community Photosynthesis

MOCEAN VALIDATION ACTIVITIES

MOCEAN Validation Activities

MAJOR OCEAN TEST SITES

MAJOR OCEAN TEST SITES

LEVEL OF COMMITMENT

MARINE OPTICAL BUOY (MOBY) - NASA HIGH

Optics, Bio-Optics

HAWAIIAN OCEAN TIME SERIES (HOTS) JGOFS HIGH

Biogeochemistry & Physics

BERMUDA ATLAN. TIME SERIES (BATS) JGOFS HIGH

Biogeochemistry, Physics & Optics

ANTARCTIC LTER HIGH

Palmer Bio-Optics, Physics

MIDDLE ATLANTIC BIGHT (MAB)

UNKNOWN

Repeated Process Studies, Inst. Platforms

SOUTHERN CALIFORNIA BIGHT Multi-agency HIGH

CalCOFI (30 year ship time series)

MAJOR OCEAN TEST SITES (cont.)

MAJOR OCEAN TEST SITES

LEVEL OF COMMITMENT

EAST. GULF OF MEXICO NASA, Multi-agency Biooptics, Case 2, River Plume HIGH

CHESAPEAKE BAY & PLUME REG. - Multi-agency Case 2 - high variability, low predictability

MIXED

TOGA-TAO
Equatorial Pacific & Atlantic, Physics

HIGH

SIX MONTHS

YAMATO BANK OPTICAL MOORING NASDA Optics, Bio-Optics (OCTS Validation)

MEDIUM

EUROPEAN SITES, Baltic/North Sea, Eddystone, JRC Sites,

HIGH

TASMAN SEA AUSTRALIA Physics, Bio-Optics

MAJOR OCEAN TEST SITES (cont.)

MAJOR OCEAN TEST SITES

LEVEL OF COMMITMENT

WOCE LONG LINES & REPEAT SECTIONS WMO UNKNOWN

Physics

ATLANTIC MERIDONAL TRANSITS UK

THREE YEARS

Bio-Optical, Physics

HARVEST PLATFORM. TIDE GAUGE NETWORK HIGH

Sea Level /Altimetry

ARM SITES - DOE HIGH

Radiative Fluxes

AERONET - NASA HIGH

Maritime Aerosol Optics Sites

TASMAN SEA AUSTRALIA HIGH

Physics, Bio-Optics

NON EOS FIELD ACTIVITIES

Field Campaign	Sensors	Respons ible T eam Members	Purpos e	Dates
Tropical Western Pacific (ARM Site)	M-AERI	Brown & Minnett	SST	Continuing
Arctic Ocean (ARM Site)	M-AERI	Brown & Minnett	SST	Continuing
Atlantic Meridonal	M-AERI	Brown, Minnett,	SST, Large-scale	9/98-4/99
Transect		MOCEAN	Bio-optics	9/99-4/00
			-	9/00-4/01
Pacific Meridonal	M-AERI	Brown & Minnett	SST	9/98-4/99
Transect				9/99-4/00
				9/00-4/01

NEW EOS FIELD ACTIVITIES (BIO-OPTICS)

Location	Product	MODIS Investigator	Purpos e	Date
H aw aii	Bio-optics, SST, Atmosphere Properties	Clark, MOCEAN	AM-1 Sensor Initialization	10/98
Gulf Mex. Sargass o	Bio-optics	Carder, MOCEAN	Alg. Initial. (Case 1/Case 2)	11/98
ТОТО	Bio-optics	Carder, MOCEAN	Near-field scatter	3/99
NW Africa	Bio-optics SST	Clark, MOCEAN	Saharan Dust	6/99
Baffin Bay	SST	Brown, Minnett	Polar Atm os phere	8/99

NEW EOS FIELD ACTIVITIES (BIO-OPTICS) (cont.)

Location	Product	MODIS Investigator	Purpos e	D ate
MAB	Bio-optics	Carder	Case 1 Case 2 Transition	10/99
Tasm ania	Bio-optics	Clark, Parslow MOCEAN	High Latitude	2/00
MAB	Bio-optics	Clark, MOCEAN	Urban Aerosols	6/00
GOM Miss.	Bio-optics	Carder	CDOM	6/00
H aw aii	Bio-optics, SST, Atmospheric Properties	Clark, MOCEAN	PM-1 Sensor Initialization	3/01
Gulf of Maine	Bio-optics	Balch	Coccoliths	8/01

Wayne Esaias, MODIS Ocean Group Leader

September1996

Measurement Suite for Typical MOCE Campaigns

Incident Spectral Irradiance

Upwelled Spectral Irradiance

Upwelled Spectral Radiance Distribution

Aerosol Vertical Distribution (MPL)

Whitecap Spectral Reflectance Aug.

Water-Leaving Radiance

Downwelling Irradiance Attenuatuion

Spectral Reflectance

Phytoplankton Pigments (HPLC)

Cyanobacteria Pigments (Exp. Fluorimetric)

Chl a Profiles

Trackline Temperature

Trackline Chlorophyll a

Inorganic Suspended Material

Detritus Spectral Absorption Coefficient

Particle Size Frequency Distribution

Particulate Organic Nitrogen

Phytoplankton Speciation Videos

Atmospheric Pressure

Wind Velocity

Downwelled Spectral Irradiance

Upwelled Spectral Radiance

Sky Radiance & Polarization Distribution

TIR Radiance (M-AERI) (Occasional)

Spectral Solar Atmospheric Transmission

Attenuation Coff. of Upwelled Irradiance

Attenuation Cofficients Radiance

Beam Spectral Attenuation Profiles

Phytoplankton Pigments (Fluorimetric)

Fluorescence Profiles

Trackline Salinity

Trackline Beam Attenuation (530 nm)

Total Suspended Material

Organic Suspended Material

Particle Spectral Absorption Coefficient

Particulate Organic Carbon

Primary Productivity (Occasional)

Secchi Disk Depth

Relative Humidity

Sea & Sky State Photographs

AUGMENTATIONS

- Joint collection of physical and bio-optical observations at test sites.
- 3-4 additional M-AERIE equivalent instruments.
- Additional MOBY instruments for broader coverage.
- 2 time-series stations at high latitudes (may be combined with MOBY sites).
- Aircraft instrument observations at MOBY site.
- Ship support for N. W. Africa Saharan Dust Input Experiment.

INSTRUMENT DEVELOPMENT ACTIVITIES

- Deployable fiber-optics based radiometers to minimize the effects of in-water instrument self shading.
- Portable reference lamps for rapid checking of calibration for in situ radiometers.
- Anti-fouling compounds or strategies for keeping the windows of unattended in situ radiometers clean.
- Small, inexpensive, stable, broad-band IR thermometers for rapid measurement of sea surface "skin" temperature.
- Portable Pump and Probe and Fast Repetition Rate Fluorometric systems for measurement of primary productivity.
- Standards for particle absorption.