BRDF/Albedo (MOD43B): Early Products and Results

BU and UCL BRDF/Albedo Teams
Overview

- Algorithm Review and Latest Prototyping
- Early Processing
- Early Products
- Concerns and Kudos
- Q/A and Validation
- Benchmarks
Bidirectional Reflectance/Albedo Product (MOD43)

Objective:
- Quantify angular variation in reflectance of land surface covers and estimate albedo for energy balance and climatic studies

Features:
- Utilizes seven land bands of MODIS data as gridded in a 16-day period
- Adds MISR, MODIS-Aqua data in postlaunch
- BRDF shape is fit to a semiempirical model derived from simplifications of physical models of surface scattering
- BRDF is integrated to provide spectral albedo measures independent of atmospheric effects
- Narrowband and broadband spectral albedos provided
- Level 3, land only, 1-km grid, 16-day repeat
Kernel-Driven Semiempirical BRDF Model

- **BRDF Model**
 - Linear combination of two BRDF shapes and a constant
 - BRDF shapes described by *kernels*, which are
 - Trigonometric functions of incidence and view angles
 - Derived from physical models for surface scattering

- **Analytical Form**

 \[R = f_{iso} + f_{geo}k_{geo} + f_{vol}k_{vol} \]

 - where
 - \(f_{iso} \) is a constant for isotropic scattering;
 - \(k_{geo}, k_{vol} \) are trigonometric functions providing shapes for geometric-optical and volume-scattering BRDFs; and
 - \(f_{geo}, f_{vol} \) are constants that weight the two BRDFs
Fitting the BRDF Model: Inversion Strategies

- **Full inversion**: \(\geq 7 \) looks
 - Use least squares fitting to estimate BRDF parameters

- **Magnitude inversion**: 1–6 looks
 - Use BRDF database for shape of BRDF
 - Adjust magnitude of BRDF to fit measurements while retaining BRDF shape
Global BRDF/ Albedo At-Launch Database*

- **Objective**
 - Provide a global, at-launch, albedo database to initialize BRDF/Albedo algorithm
 - Merge field BRDF observations, land cover, and AVHRR data

- **Approach**
 - Defined 25 land cover classes with contrasting BRDF shapes
 - Used Olsen classification (94 labels) from USGS 1-km database
 - Created summer (July) and winter (February) versions (e.g., with and without background snow)
 - Fit Li-sparse/Ross-thin BRDF kernel model to 68 field BRDF datasets to provide BRDF shapes for these classes
 - (Note that database is also useful for global atmospheric correction and aerosol studies.)

- **Postlaunch Database**
 - Repopulate at-launch database with good inversions from prior time periods

*Doctoral dissertation work of Nick Strugnell, BU
Global Albedo from AVHRR*

- **Objective**
 - Provide winter and summer spectral and broadband albedo database at 1 and 10 km spatial resolution

- **Approach**
 - Use composited AVHRR red and NIR band data for February and June, 1995
 - Go to BRDF/Albedo at-launch database, perform 1-look magnitude inversion in red and NIR
 - Extend from red and NIR bands to broadband using
 - Typical vegetation/soil spectra
 - Typical downwelling irradiance spectrum
 - Local solar noon

*Doctoral dissertation work of Nick Strugnell, BU
Global Albedo from February 1995 AVHRR Data
Global Albedo from July 1995 AVHRR Data

Black-sky Albedo at Local Noon
Early MODIS BRDF/Albedo Processing

● Production
 ❑ Two 16-day global products made at MODAPS
 ✦ Days 97–112 (4/6–21)
 ✦ Days 113–128 (4/22–5/7)
 ✦ Data are incomplete; some tiles lost due to bugs in our code
 ❑ Awaiting 16-day runs from global “golden month” (May)

● Bugs and Fixes (v. 2.1.14)
 ❑ Metadata—Several problems fixed here
 ❑ Memory Leak—cause of lost tiles due to crashing
 ❑ Science bugs—Out of range parameter problems fixed
 ❑ Improvements—Addition of remaining spectral bands to albedo product
 ❑ Walthall model broken, to be fixed in 2.1.15
Early Examples and Products

- **North Carolina: March 5–8 and April 6–21**
 - NBAR false-color composites
 - Broadband white-sky albedos
 - Shows green-up particularly well

- **North America: April 6–21 and April 22–May 7**
 - NBAR false-color composites
 - Broadband white-sky albedos
Composite Map of Nadir BRDF-Adjusted Reflectance (NBAR)
North America, April 6 – April 21, 2000

NIR (0.10–0.40) Red (0.00–0.16) Green (0.00–0.18)

BU/UCL
Composite Map of Nadir BRDF-Adjusted Reflectance (NBAR)
North America, April 22 – May 7, 2000

NIR (0.10–0.40) Red (0.00–0.16) Green (0.00–0.18)

BU/UCL
Concerns and Kudos

● Data Quality
 ❑ Some striping in Bands 3, 5, 6, 7 leaking into final product
 ❑ Confident that these will repaired shortly
 ❑ Geolocation now performing well

● Production
 ❑ Hoping for more complete 16-day intervals soon

● Upstream Products
 ❑ Surface reflectance, cloud mask have greatly improved

● Kudos
 ❑ Special thanks to:
 ✦ SSI&T Team for handling bug fixes so quickly
 ✦ LDOPERs for spotting problems and keeping us up to date
MOD43B BRDF/Albedo Product Validation

- **Routine Q/A**
 - Golden tiles
 - Use MOD43B BRDF parameters to predict future observations

- **Evaluations**
 - Compare albedo results with existing global databases
 - AVHRR, POLDER, METEOSAT, MISR

- **Field Efforts:**
 - Shunlin Liang—Validation Scientist (BARC EOS core site)
 - Mike Barnsley—EOS core site (Barton Bendish)
 - P. Lewis—EOS core sites (Africa)
 - Peter Muller—BSRN albedo data
 - BU—(Participation limited by funds)
 - Albedometers with Rachel Pinker at Jornada EOS core site
 - Local EOS core site—Harvard Forest
Benchmarks

- **DAAC Release**
 - August 1: Complete documentation and user guide
 - September 1: DAAC releases product

- **MISR Data Incorporation**
 - Prototyping in October–December period
 - Add MISR to production data stream by January 1, 2001

- **MODIS-AQUA**
 - Add MODIS-ACQA to data stream first quarter. 2001, depending on launch
MODIS Land Cover Prototyping Activities

Boston University Land Cover Team
Overview

- Quick Review
 - Product description
 - Algorithm
 - IGBP Classification

- Global Training Site Database Status

- Recent Prototyping with AVHRR
 - North America
 - New England

- Code and Processing Status
- Benchmarks
Land Cover Product Summary

Objective:
- Provide a simple land-cover categorization for biophysical parameterization for GCM, hydrologic, and carbon cycling models

Features
- Categorizes land cover according to life-form, cover and height of dominant vegetation type following IGBP-DIS scheme
- Uses data from spectral, spatial, temporal, directional domains as derived from other MODIS products
- Relies on advanced classifier technology—e.g., neural nets, decision trees
- Network of global test sites planned for algorithm calibration and validation
- At-launch 1-km database derived from AVHRR heritage
- Level 3, 1-km spatial resolution, 96-day product; Climate Modeler’s Grid (1/4°) product also available
IGBP Land Cover Units (17)

- **Natural Vegetation (11)**
 - Evergreen Needleleaf Forests
 - Evergreen Broadleaf Forests
 - Deciduous Needleleaf Forests
 - Deciduous Broadleaf Forests
 - Mixed Forests
 - Closed Shrublands
 - Open Shrublands
 - Woody Savannas
 - Savannas
 - Grasslands
 - Permanent Wetlands

- **Developed and Mosaic Lands (3)**
 - Croplands
 - Urban and Built-Up Lands
 - Cropland/Natural Vegetation Mosaics

- **Nonvegetated Lands (3)**
 - Snow and Ice
 - Barren
 - Water Bodies
Advanced Technology Classifiers

- **Supervised Mode**
 - Classifiers operate in supervised mode with training sites
 - Allows multiple classification

- **Neural Networks—** *Fuzzy ARTMAP*
 - Uses Adaptive Resonance Theory in building network
 - Nonlinear partitioning of measurement space
 - Significantly outperforms backpropagation algorithms
 - New Gaussian version adjusts for covariance

- **Decision Trees—** *C5.0 Univariante Decision Tree*
 - Fast algorithm
 - Uses boosting to create multiple trees and improve accuracy

- **Voting Rules**
 - Multiple trained networks and decision trees used as voters in ultimate decision rule
Prototyping North America With AVHRR

- IGBP Classification Scheme (17 classes)
- Prototype released Fall, 1999, as poster, web database, and CD-ROM
- Accuracies, based on unseen training sites
 - Overall: 65%
 - Collapsed classes: 79%
- New Science
 - Uncertainties derived from boosting allow confidence mapping
 - Use of prior probabilities to improve accuracy
Test Sites

- IGBP-DIS Core/Confidence Sites
 - Random sampling of classes on 1992 IGBP Global Land Cover Product
 - 425 sites identified; 413 SPOT and TM scenes acquired; 91% migrated to WWW by BU (6/6/00)

- BU STEP Database
 - 2614 training sites from 645 TM scenes (6/6/00)

- Status (6/6/00)
 - North America: In second level Q/A analysis after prototype release, Fall, 1999
 - South America: In prototype classification development
 - Africa: Initial analysis complete, waiting Q/A
 - Eurasia, Pacifica: In progress and awaiting new scenes and samples
New Ideas for Land Cover Classification

- **Confidence Mapping**
 - Use classifier trials to map confidence in classification on a pixel-by-pixel basis
 - Example—North American classification confidence map

- **Prior Probabilities**
 - Use ancillary data as prior probabilities to adjust classification to favor more likely classes
 - Example—reduce confusion between agriculture and natural vegetation types in central midwestern US
Mapping Classification Confidence

Confidence

- Low: 0
- 25
- 50
- 75
- High: 100
Inclusion of Prior Probabilities for Agriculture

Change Legend:
- No Change
- Change from Agricultural Class to Natural Vegetation Class
- Change from Natural Vegetation Class to Agricultural Class

Change: Ag. To Natural Veg. – 8.7%; Natural Veg. To Ag. – 8.2%
MODLand Support Products

- **Six Biomes for LAI/FPAR**
 - Six-biome map needed to support LAI-FPAR algorithm
 - Provisional map from revised IGBP-DISCover Product
 - North American test product prepared

- **Modified IGBP for Net Primary Productivity (NPP)**
 - NPP uses IGBP, but needs more information on leaf type and cover for some classes
 - Working with Montana and Maryland to fill their need
Code and Processing Status

- MOD12M (Monthly Composite Database)
 - Ran once at MODAPS
- Bugs and Fixes
 - Metadata and fill value problems in input datasets are being worked
Benchmarks

- Completion of IGBP-DIS core and confidence WWW info 7/1/00
- Completion of first-generation global training set 9/1/00
- Begin test classifications by continents 9/1/00
- Release continental prototypes 1/1/01–4/1/01
- Release global prototype 6/1/01
- Release final product stream 8/1/01
Land Cover Validation

● Statistical Assessment Based on Site Data
 ❑ Cross-validation provides probability estimate for errors of omission/commission
 ❑ Two sets of site data:
 ✦ IGBP-DIS Core/Confidence sites—Random stratified sample based on IGBP Land Cover map (Loveland et al., EDC)
 ✦ Supplemental sites compiled at BU—no explicit sampling design, but large N

● Comparison with Community Benchmark Datasets
 ❑ Comparison with independent maps derived from high resolution data, e.g.,
 ✦ Humid Tropics: Landsat Pathfinder
 ✦ Forest Cover: FAO Forest Resources Assessment
 ✦ Western Europe: CORINE
 ✦ United States: USGS/EPA MLRC

● Collaboration with Regional Expertise
Land-Cover Change Overview

- **Technical Approach**
 - *Change Vectors*
 - Compares the position in measurement space of observations made in successive years
 - Simple, direct
 - Will be primary tool for change detection and characterization

- **Development Status**
 - Algorithm prototyped for Africa with AVHRR data by Lambin et al.
 - Requires multitemporal MODIS data, so postlaunch status
Land-Cover Change

- **Change-Vector Analysis**
 - Time-trajectory of each pixel through a year taken as a point in multidimensional measurement space
 - Change vector quantifies distance and direction of change for points from two successive years

![Multidimensional measurement space diagram](image)

- **Multidimensional measurement space**
 - Year 1
 - Year 2
 - Change Vector