Estimating Chlorophyll Concentrations using MODIS Fluorescence: A Preliminary Evaluation in Coastal Waters

Ricardo Letelier, Mark Abbott, Jasmine Nahorniak
College of Oceanic and Atmospheric Sciences
Oregon State University

Acknowledgment: Robert Evans et al. University of Miami
Natural (passive) Fluorescence

where $F =$ fluorescence

$[chl] =$ chlorophyll concentration

$PAR =$ photosynthetically available radiation

$a^* =$ chlorophyll specific absorption

$\phi_F =$ fluorescence quantum yield

• Absorbed Radiation by Phytoplankton

$ARP = a^* \times [chl] \times PAR$ (calculated independently from $[chl]$)

• $F/ARP =$ Chl Fluor. Efficiency (CFE) $\propto \phi_F$
If $\Phi_p + \Phi_f + \Phi_h = 1$ & $\Phi_h = \text{const.}$

then $\Phi_p = \text{const.} - \Phi_f$

\therefore

$PP = [\text{chl}] \times (\text{PAR} \times \alpha^*) \times (\text{const.} - \Phi_f)$

or $PP \propto ARP \times (\text{const.} - \text{FLH}/ARP)$

$\propto (\text{const.}/ARP) - \text{FLH}$
Can we use FLH to tell us about chlorophyll?

- Absorption-based algorithms fail in waters where there are other materials that absorb and scatter and are not correlated with chlorophyll
 - Sediment
 - Dissolved organic matter
- Chlorophyll fluorescence is specific to chlorophyll
 - But it also depends on physiology
Goddard DACC weekly declouded 36 km starting 12/02/2000 (Quality=0 L2 V 4.2.2)
Goddard DACC weekly declouded 36 km starting 12/02/2000 (Quality=0 L2 V 4.2.2)
Chlorophyll June 25, 2002
Field Approach

- Mesoscale Surveys (Cowles/Barth)
Some Survey Measurements

- Continuous from Flow-through system
 - Temperature/ Salinity
 - Active Fluorometry
 - Fast Repetition Rate Fluorometry
 - Total and dissolved absorption and attenuation

- Discrete
 - Pigments (Fluor/HPLC)
 - Nutrients (autoanalyzer)
 - Particulate absorption

- Other Platforms
 - Optical Drifters, tethered buoys
 - Moorings
 - Satlantic MicroSAS underway reflectance
Comparison between field measurements and Remote Sensing data
(Mesoscale Survey August 2000 And MODIS Image from August 2nd)

(In situ chl derived from the calibration of the flow through fluorometer with HPLC chlorophyll determinations)

-Blue = all mesoscale survey data (July 31st - August 7th)
-Red = Within 0.5 days of the MODIS Image Time stamp
Range covering most oceanic regions (Gordon, 1979; Carder & Steward, 1985; and others)
Fischer and Kronfeld (1990) Assuming CFE = 0.003
Chlorophyll biomass proxy

Optimum photosynthesis max yield

(From Rachel Sander's work)
August 2000 (Nighttime)

Optimum Absorption Quantum Yield

Absorption Cross-section of Photosystem II
Photoprotective:Photosynthetic pigment ratio

Other alternatives:
- Changes in ARP (We just finished analyzing the filter pad particulate absorption samples)
- Heat dissipation processes not accounted for
However:

- FLH and CFE are very different MODIS products in terms of validation.
 - FLH is based on nLw at 678 nm after baseline correction
 - CFE is a proxy for Φ_f (a physiological parameter) that requires the previous validation of ARP ([chl] x a^*).
 - Further use of Φ_f to infer Φ_p requires the characterization of the variability in energy distribution within the photosystem.
Thalassiosira weissflogii
Chemostat results 2001-2002

After 3 days of constant cell counts
After 14 days
Summary

• Fluorescence and chlorophyll
 - Generally a linear relationship between absorption-based estimates and fluorescence-based estimates of chlorophyll
 • Exceptions are apparent, for example near the coast
 - Slope of line relating FLH to chl is related to CFE

• Can we estimate chlorophyll from FLH?
 - Challenge is that many processes affect Φ_F
 • Photoprotective pigments, absorption cross-section
 - Appears, though, that CFE appears to fall into 2 clusters so problem may be tractable
 - High values of CFE appear to be associated with communities far from equilibrium