Aerosol Properties over “Bright-Reflecting Source Regions”: The Deep Blue Algorithm and its Applicability to MODIS

N. Christina Hsu and S.-C. Tsay, M. D. King, Y. J. Kaufman, J. R. Herman

University of Maryland, Baltimore County & NASA Goddard Space Flight Center
Greenbelt, Maryland USA
Asian Dust (+ microbes?): Long Range Transport

"2001 Perfect Dust Storm"

TOMS Aerosol Index - time series

Airborne Dusts

Suspected Asian Dust Layer

Dust layer

Lidar Profiling

July 14, 2004
UMBC/NASA GSFC
Rationale

• **Climate Forcing**: requires aerosol properties near source regions to achieve a complete picture of aerosol information from source to sink;

• **Carbon Cycle**: tracks iron sources from windblown dust for stimulating plankton growth in the open ocean;

• **Aerosol Transport Modeling**: needs accurate and realistic dust source locations; and

• **Visibility and Adverse Health Effects**: demands timely atmospheric turbidity information over affected regions.
Percentage of Area Retrieved by Current MODIS Aerosol Algorithm

[Chu et al., JGR, 2003]

Global Coverage for Surface Reflectance (2.1μm) >0.25

~15% ≤ f(season) ≤ ~25%

[Moody et al., 2004, in submission to IEEE TGRS]
The dashed lines denote the critical values of surface reflectance where the presence of aerosol CANNOT be detected by that particular spectral wavelength.

- Simulated apparent 490 nm reflectance (atmosphere + $\tau_{aerosol} = 1 + surface$) at the top of the atmosphere, as a function of surface reflectance.
- Non-absorbing aerosols make contrast apparent reflectance diminished faster for brighter surface.
- Absorbing aerosols make apparent reflectance brighter (or darker) for darker (or brighter) surface.

*Hsu, Tsay, King, and Herman, 2004: Aerosol properties over bright-reflecting source regions, IEEE TGRS, 42, 557-569.
MODIS Visible & NIR Bands: superimposed on the GOME spectral reflectance taken over the Sahara
Inner Mongolia
then-farmland/grassland
(over-grazing and cultivation)

Coarse-size gravel

Gobi/Taklimakan
age deserts
Flowchart for Deep Blue Algorithm

1. **Radiance**
 - 412, 490, 670 nm

2. **3x3 Pixels Spatial Variance at 412 nm**

3. **412/490 Absorbing Aerosol Index**

4. **NO RETRIEVAL**

5. **Cloudy?**
 - Yes
 - **412 nm Surface Reflectivity (0.1° x 0.1°)**
 - Dust Model
 - No
 - **Surface Reflectance Determination**
 - **Aerosol Type**
 - Mixed Aerosols
 - Maximum Likelihood Method
 - **Aerosol Optical Thickness** + **Ångström Exponent**

7. **490, 670... nm Surface Reflectivity (0.1° x 0.1°)**

8. **Smoke Model**
Phase Function for Dust Model

- Used in our dust model
- Retrieved from AERONET
- Mie, m=1.55, alpha=10

Phase Function

Scattering Angle (degree)
Deep Blue Algorithm for SeaWiFS/MODIS

- Utilize solar reflectance at $\lambda = 412$, 490, and 670 nm to retrieve aerosol optical thickness (τ_a) and single scattering albedo (ω_o).

- Less sensitive to aerosol height, compared to UV methods.

- Works well on retrieving aerosol properties over various types of surfaces, including very bright desert.
Asian Dust Outbreak
6 April 2001

Deep Blue Algorithm:
- Cloud mask works very well
- Aerosol retrievals indicate dust storms originated from Gobi and Inner Mongolia regions
- Single scattering albedos are quite different between these two regions
\[\tau_\lambda \propto \lambda^{-\alpha}, \quad (\text{Ångström 1961}) \]
\[\alpha = \ln \left[\frac{\tau_1}{\tau_2} \right] \sqrt{\ln \left[\frac{\lambda_2}{\lambda_1} \right]} \]
Perfect Dust Storm
7 April 2001
Comparisons with AOT from Sun Photometers in China during ACE-Asia
Aerosol Optical Thickness Retrieved from Deep Blue Algorithm:
Dust plumes in Africa

Feb 25, 2000

Feb 26, 2000

Feb 27, 2000

Cloud

N. Christina Hsu
Validation: Comparisons with AERONET
Aerosol Optical Thickness

North Africa
February 2000

Arabian Peninsula
June - July 2000
1st Case: 6 April 2001

MODIS Red-Green-Blue with Rayleigh scattering removed

Current MODIS
Aerosol Optical Thickness

MODIS Deep Blue
Aerosol Index

Rayleigh scattering removed
Summary

• **It works!**
 – *Deep-Blue Algorithm* well for SeaWiFS measurements
 – Compared *well* with surface/aircraft products
 – Separate dust *well* from other anthropogenic sources

• **We expect:**
 – Implement *Deep-Blue Algorithm* *soon* for MODIS
 – Produce new MODIS products over bright-reflecting surfaces, and integrate into operational MODIS products
Backup Slides
Aerosol retrievals use an Aerosol Index:

Defined in a manner similar to the aerosol index for TOMS to distinguish between absorbing and non-absorbing aerosols:

\[AI = -100 \cdot \left[\log_{10} \left(\frac{I_{412}}{I_{490}} \right)_{\text{meas}} - \log_{10} \left(\frac{I_{412}}{I_{490}} \right)_{\text{calc}} \right] \]

- \(I_{\text{meas}} \) = Radiance measured by the satellite at 412 or 490 nm
- \(I_{\text{calc}} \) = Radiance calculated using a radiative transfer model

Large AI’s are caused by high AOT or by highly absorbing aerosols. As with UV wavelengths, the visible AI is also a function of altitude.
The dependence of Al with both AOT and absorption is confirmed by simulations we performed using aerosols of different types.

The properties of blue water were assumed in this simulation
The aerosol characteristics used to generate the simulated radiances in these two figures are shown below

<table>
<thead>
<tr>
<th>Aerosol Model</th>
<th>τ_{412}</th>
<th>τ_{490}</th>
<th>τ_{470}</th>
<th>τ_{470}</th>
<th>Refractive Index 412 nm</th>
<th>Refractive Index 490 nm</th>
<th>ω_0 412 nm</th>
<th>ω_0 490 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dust</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
<td>0.96</td>
</tr>
<tr>
<td>Smoke</td>
<td>1.30</td>
<td>0.92</td>
<td></td>
<td></td>
<td>1.55 – 0.020i</td>
<td>1.55 – 0.008i</td>
<td>0.90</td>
<td>0.89</td>
</tr>
</tbody>
</table>

In areas of mixed aerosol types, we linearly mix radiances from the dust aerosol model, R_{dust}, with those from the smoke aerosol model, R_{smoke}, with a peak at 3 km and a width of 1 km assumed.

$$R_{smoke} = aR_{dust} + (1-a)R_{smoke}$$