
PARASOL and the A-TRAIN

LABORATOIRE D'OPTIQUE ATMOSPHERIQUE CENTRE NATIONAL D'ETUDES SPATIALES

Contact : Didier Tanré (tanre@loa.univ-lille1.fr), Jean-François Léon (leon@loa.univ-lille1.fr), Jérôme Riédi (riedi@loa.univ-lille1.fr) This poster is based on the PARASOL print press pack available at http://smsc.cnes.fr/PARASOL/

SCIENTIFIC GOALS

Greenhouse gases were long considered the only object worthy of study by scientists researching global warming. That was until work to model and measure the radiation budget, in particular at the LMD dynamic meteorology research laboratory in France, showed that natural or mammade aerosols play a crucial role in shaping climate. Indeed, according to the French science academy they could even be 'the largest source of uncertainty in climate forcing calculations." The Parasol mission, decided in 1999, aims to measure polarization and directionality of reflectances, especially in regions covered by the lidar on the Calipso minisatellite. Solar radiation becomes polarized when scattered by certain particles like aerosols, water droplets or ice crystals. Parasol will measure light polarized in different directions to gain a more precise characterization of clouds and aerosols than can be obtained by more traditional methods that measure their spectral signature. Data collected by Parasol will allow us to establish the quantity and size distribution of aerosols over ocean regions, as well as their turbidity index over land surfaces, and to evaluate radiative forcing from solar radiation. They will also help to detect clouds, determine their thermodynamic phase and alitude, and estimate reflected solar flux. The integrated water vapour content will also

PARASOL LAUNCH

Parasol has been launched on December 18th as an auxiliary passenger on an Ariane 5G+ flight that will also be carrying Helios 2A, the first satellite in France's second-generation military surveillance system, the four Essaim microsatellites built around the Myriade bus, and a Spanish nanosatellite. Mounted on the ASAP5 platform (Ariane Structure for Auxiliary Payload) with its five co-passengers, it will be the last to separate from the launcher into a near-circular orbit at an altitude of 705 kilometres. CNES will be required to position six satellites—the Helios2A military satellite, to be positioned with respect to its predecessor Helios 1B; Parasol in the Arian for formation—almost simultaneously in an unprecedented, ultraprecise orbital dance choreographed by operations teams. ONES's Operational Orbit Determination Centre (CCO) will determine the orbit of each satellites using data from its network of 2-O4: tracking stations, the Princent network, and from Chinese stations for Parasol. The close sequence of positioning operations calls for special care to avoid radiofrequency signal interference and the risk of the satellites colliding.

20 nm

20

20 nm 20 nm

40 nm

10 nn

40 nm 20 nm 20 nm

4901

565 670P

865

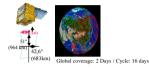
Radiance

Radiance

polaria

Dedi

Radianc


Cloud detection Drop of ocean color applications Aerosol retrieval Cloud pressure Lidar @ 532 nm Aerosol retrieval

Cloud properties Aerosol retrieval

Oxygen A ban

Lidar @

Diffe (gen) tial a

After the loss of the POLDER instruments on the Japanese satellites ADEOS I in June 1997 and ADEOS II in October 2003, Parasol offers a new opportunity for the climate change research community. The likenesses between the two instruments are undeniable, since the Parasol payload is based to a large extent on the POLDER instrument, which was designed by the LOA atmospheric optics laboratory (CNRS-USTL, Lille). However, its scientific objectives diverge somewhat from POLDER, since its main purpose is to acquire atmospheric measurements, although I can also observe ocean colour and vegetation. The Parasol payload consists of a digital carrentwith a 274/242/241 COC detector array, wide-field telecentric optics and a rotating filter wheel enabling measurements at different wavelengths and in several polarization directions. Because it acquires a sequence of images every 20 seconds, the instrument can view ground targets from different angles. Compared to POLDER, the telecentric optics array has been turned 90 degrees to favour multidirectional viewing over daily global covierage. Likevise, a 1020-nm waveband has been added to conduct observations for comparison with data acquired by the lidar on Calibrate the POLDER instruments, using in particular the Sun's reflection from the ocean surface, douds and desert areas as targets to validate in-fight performance.

PARASOL INSTRUMENT BUILT ON POLDER HERITAGE

- 9 spectral bands (443, 490, 565, 670, 763, 765, 865, 910, 1020 nm), 3 are polarized (490, 670, 865 nm) - Up to 14 - viewing angles per pixel for a single satellite pass Pixel at nadir : 5.3km x 6.2 km (705km) - POLDER was aboard the Japanese ADEOS-1 platform from August 1996 to June 1997 and ADEOS-2 from April to October 2003.

-Two-dimensional CCD detector array:CCD : 242 * 274 pixels

- Life Time: 2 years

SCIENTIFIC PRODUCTS -

PARASOL STANDART PRODUCTS:

The level 1 product shall account for 14 viewing directions per pixel.

alibrated radiances and polarized radiances in the 9 innels

Chamnes Browse product will be provided. • A track product consisting of extractions of the full swal level 1 product over the CALIPSO-CENA/CloudSAT track (=10 pixels) shall also be provided.

AEROSOLS

CLOUDS

 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X
 X

 V (and/ocean)

 Phase function
 v (recomputed)

 Single scattering albedo
 ?

CALIPSO-CENA

SYNERGY IN THE FRAME OF THE A-TRAIN =

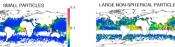
The A-Train

Total aerosol optical depth Ratio of the Aerosol optical thicknesses of the accumulation and coarse modes Angström exponent

PARASOL STANDART PRODUCTS:

Effective radius of the size distribution Aerosol over land:

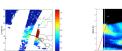
Level 2 and level 3 products consist in (resolution ~20Kmx20km):


Aerosol over land:
 Aerosol optical thickness of the accumulation mode
 Angstrim exponent of the accumulation mode
 Cloud and ERB product
 Cloud Optical Thickness
 Cloud Optical Thickness
 Cloud Phase
 Cloud Top pressure (2 methods)
 Short-wave albedo.
 Water vapor content

LARGE SPHERICAL PARTICLES PARASOL RESEARCH PRODUCTS:

-Cloud product Ice cloud microphysics index (shape/size)

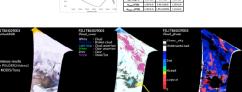
-Aerosols over ocean


Aerosol refractive index of the accumulation mode Phase function (corrected for surface and multiple scattering contributions) Polarized Phase function (corrected for surface and multiple scattering contributions)

The Parasol mission intends to characterize the radiative properties of clouds and aerosols by exploiting its complementarity with the other instruments in the A-Train formation, which include the CERES and MODIS radiometers on the Aqua satellite, the lidar on Calipso and the radar on CloudSat. The French-U.S. A-Train observatory is a world first. Until now, passive instruments measuring solar radiation reflected by the Earth's surface have operated independently. And the use of active lidar and radar instruments to measure clouds and aerosols is relatively recent. The A-Train will offer a unique opportunity to obtain reflectance data from Aqua in regions observed by Calipso and CloudSat across a very wide spectrum, combined with data on the polarization of reflected light from Parasol. The six satellites will cross the equator one at a time, a few minutes apart, at around 1.30 pm local time, hence the nickname "afternoon constellation". However, the A-Train's railway metaphor is not strictly accurate, as the satellites do not follow each other in single file like carriages or trucks. Rather, each one files, collects data and carries out its mission independently of the other five. PARASOL and MODIS synergy

Aerosol remote sensing from Active and Passive

Retrieval of aerosol profiles of extinction (total and the other boshe between CALIPSO lidar and PARASOL or MODIS has been tested during several field campaigns involving an airborne backcattering lidar, MODISTERRA, and Ariborne POLDER. The following figures show an example of the retrieval of the aerosol vertical profile during a Saharan dust outbreak out of the African coast (the Saharan Dust Experiment, Sept. 2000, Leon et al., 2003).



2000

between (shaded area) in stu measured extinction coefficient obtained from C-130 and (solid and dashed line) lidar-retrieved extinction coefficient on 25 September close to locations (1) and (2). Alt b2 b3 else Cost (18m)

Thanks to the POLDER.2 mission (April-October 2003) and MODIS aboard TERRA, it has been possible to test different approaches for coupled algorithms that will be apply to PARASOL-AQUA. The following figures show how the aerosol refractive index can be determined using polarization measurements. The MODIS' refrieval fits the polarized radiance measured by POLDER. It implies an adjustment on the refractive index (Gerard et al., 2005)

-ast Bastast S_{AST} small S_{AST} large S_{AST} large

 POLISE
 MODIS
 MODIS

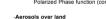
 0.300
 0.332
 0.335

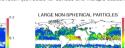
 0.282
 0.398
 0.072

 15.1%
 18.6%
 7.4%

A processing line is being developed at LOA to allow cloud retrievals from combination of POLDER and MODIS data. The processing software is able to ingest and relocate all LPB POLDER and MODIS type data on a common reference grid. It also provides all necessary ancillary data (METEO, surface albedo map, etc...) to perform oldu properties retrievals within the science packages. The images above present preliminary results of the cloud detection and cloud thermodynamic phase retrieved from a combination of information selected from POLDER and MODIS 'best of' capabilities (spatial resolution, spectral coverage, multiangie and polarization measurements). This approach is currently being further developed at LOA to better characterize cloud macrophysics (doud top altitude, multigver index, spatial variance), radiative heterogeneity, cloud particle size and cloud albedo. After preliminary investigations, the processing line will be implemented at the ICARE thematic centre for production run and systematic processing of PARSUM/MODIS-Aqua data. References :

Data : POLDER2/ADEOS2 (CNES/NASDA) and MODIS/TERRA (NASA)
 Development/Processing : J. Riedi, C. Oudard and JM. Nicolas (LOA 2005)
 Image production : HDFLook Project (L. Gonzalez - C. Deroo)





Mr.

cnes

ols over land Polarized Phase function (corrected for surface and multiple scattering contributions)

Example of aerosol products that will be derived from PARASOLThis example is derived from POLDER measurements in December 1996 and represents the maps of the monthly mean aerosol optical thicknesses of the 3 aerosol components.

Average ventual profile of aerosol effective radius(left) on Sept. 25th, 2001 as retrieved by the proposed algorithm between Cape Verde and Dakar (Sénégal). Comparison (right) between (shaded area) in situ