Ocean Color Time Series Project NASA REASoN CAN

Goal:

Provide consistent, seamless time series of Level-3 ocean color data from 1979, with a 9-year gap (1987-1996)

Emphasize consistent algorithms and calibration methodologies

Produce Climate/Earth Science Data Records (CDR/ESDR) of ocean color

Make CDR's available to the public

CDR: A time series of sufficient length, consistency, and continuity to determine climate variability and change National Research Council, 2004

Technical Definition of Consistent/Seamless: all temporal sensor artifacts removed no obvious interannual discontinuities unattributable to natural variability all known mission-dependent biases removed or quantified similar data quality and structure

Ocean Color Time Series

REASoN CAN Team:

Watson Gregg, NASA/Global Modeling and Assimilation: Oversight, Data Analysis

DAAC: Data Access and Visualization, Archival, Distribution Jim Acker, NASA/GES-DAAC Steve Kempler, NASA/GES-DAAC Greg Leptoukh, NASA/GES-DAAC

OBPG: Data Processing, In Situ Data Collection, Coincident Data Merging Gene Feldman, NASA/Ocean Color Processing Chuck McClain, NASA/Ocean Color Processing

UCSB: Coincident Data Merging/ Data Technology Jim Frew, Stephane Maritorena, David Siegel Consistent Ocean Color Time Series Requires Similar

- 1) Calibration
- 2) Algorithms
- 3) Spatial and Temporal Resolution (Level-3)
- 4) Data Format
- 5) Access
- 6) Analysis Tools
- 7) Bias characterization

SST: increased 0.2°C in 20 years = 1% change, or 0.05%/year Estimated from Reynolds using AVHRR

SeaWiFS: Maximum difference over lifetime (highest annual mean – lowest annual mean) = 5%

Surface Air Temperature: increased 1°C in 100 years = 5% change, or 0.05%/year Estimated from thermometers, tree rings, ice boreholes The REASoN Project has now completed data records for

OCTS (RV1) SeaWiFS (V5.1) MODIS-Aqua (V1.1)

using consistent processing methodologies as defined

Global Annual Trends using SeaWiFS, and SeaWiFS/Aqua

Regional Annual Trends

SeaWiFS SeaWiFS/Aqua -150 -120 120 150 180 -180 -150 -120 120 150 180 -180 -90 -60 60 90 -90 -60 -30 90 90 90 90 90 60 60 60 60 30 30 -30 -30 -3(-60 -60 -60 -60 -90 -90 .on 180 180 -180 -150 90 120 150 -180 -150 90 120 150 120 -20 -10 100 -30 0 10 20 50 -20 -10 0 10 20 50 100 Trend % Trend %

Linear trends using 7-year average/composite images were calculated, and when significant (P < 0.05), shown here.

OCTS

Global Monthly Mean Chlorophyll

Trends 1998-2004

Data/Model

SeaWiFS **NOBM Free Run** NOBM assimilation SeaWiFS -0.98% ns

Linear Annual Trend

-0.71% ns 0.18% ns

Free Run Model Chlorophyll Apr 1 200

Daily SeaWiFS Chlorophyll Apr 1 2001

Compared to In situ Data

	Bias	Uncertainty	Ν
SeaWiFS	-1.3%	32.7%	2086
Free-run Model	-1.4%	61.8%	4465
Assimilation Model	0.1%	33.4%	4465

Advantages of Data Assimilation Achieves desired consistency, with low bias Responds properly to climatic influences Full daily coverage – no sampling error Effective use of data to keep model on track Only spatial variability required from sensors

Disadvantages of Data Assimilation Low resolution (for now) No coasts (for now) Excessive reliance on model biases Cannot validate model trends with sensor data

Can the CZCS provide a Climate Data Record?

CDR: A time series of sufficient length, consistency, and continuity to determine climate variability and change National Research Council, 2004

The most ground breaking biological satellite in history

More than 1000 peer-reviewed publications

Major scientific advances

Unprecedented view of spatial variability (gyres, coasts)
Immenseness of the North Atlantic spring bloom
Iron hypothesis
Validation of first ocean biology models
Importance of CDOM, aerosols, Case 1 and Case 2 waters
Warm core rings, cold core rings
Associations between tuna populations and fronts
First data-driven estimates of global primary production
First attempts at biological satellite data assimilation
Established chlorophyll as a climate variable

CZCS Deficiencies

- 1) Low SNR
- 2) 5 bands, only 4 of which quantitatively useful
 -- limits aerosol detection capability
- 3) Navigation
- 4) Polarization
- 5) El Chichon
- 6) Anomalous behavior post-1981
- 7) Sampling

Ocean Color Missions: Bands

CZCS Aerosol Workarounds

Evans and Gordon, 1994, JGR

Fixed aerosol type (epsilon)

Advantages:	simple to implement
	led to data access, major advances in knowledge
Disadvantages:	all variability assumed to be oceanic in origin
	single scattering aerosols
	underestimates of chlorophyll

Gregg et al., 2002 Applied Optics

Characterize aerosols in clear water, extrapolate using statistical 2-D methods (objective analysis), access SeaWiFS multiple scattering tables

Advantages:	coincident
	variability partitioned among aerosols and ocean
	preserves knowledge derived from actual data
	2-D objective extrapolation
	multiple scattering aerosols
	clear water represents approx. 90% of oceans
Disadvantages:	extrapolation is statistical
-	requires aerosol fronts and chlorophyll fronts are uncorrelated

Antoine et al., 2005, JGR

Iterate between pre-defined optical representation in the ocean (Morel ocean) and atmosphere (Angstrom atmosphere) to obtain numerical convergence

Advantages:	coincident
	preserves knowledge derived from actual data
	variability partitioned among aerosols and ocean
Disadvantages:	single scattering aerosols
	only works in optically well-behaved areas

REASoN V2, Sep. 2006

Fixed aerosol model (maritime 99% humidity), CZCS-derived multiple scattering tables

Advantages: simple to implement multiple scattering aerosols Disadvantages: all variability assumed to be oceanic in origin

CZCS Polarization

Exists, and is tilt-dependent

Gordon: band-to-band polarization is removed through in situ calibration residual tilt-dependent polarization is maximum <1 digital count

EI Chichon

Massive volcanic eruptions, late March 1982, early April 1982 (2)

Gordon and Castano 1988: up to tau = 0.4, effect = 1-2 digital counts at $L_a(443)$

All missions have "events"

SeaWiFS:

3 El Ninos (1997-1998; 2002-2003; now)

1 major 2.5-year La Nina (1998-2000)

26 named tropical storms/hurricanes 2005

(overall increased frequency and intensity of hurricanes)

Canadian wildfires 2002

Indonesian wildfire 1997

Largest fires in history in Alaska 2004

Biomass burning in Africa and South America

Asian Brown Cloud

Great Saharan Dust Storm 2004, 2006

South Indian (-50 to -10) Autumn

N Central Pacific (10-40N)

Figure 4. Calibration variation in the bands at 520 nm (solid curve) and 550 nm (dotted curve). The solid diamonds correspond to the beginning of each calendar year, starting with 1979. The two error bars at the upper left are the radiances corresponding to 1 digital count of the CZCS (shorter bar is for 550 nm).

N Central Atlantic (10-40N) Autumn

CZCS Sampling

Time Series Issues

- 1) How calibrate historical and future sensors, maintaining consistency?
- 2) Is BRDF a good idea?
- 3) Can we define more rigorous metrics than in situ comparisons, that constrain global mean estimates?
- 4) Is it acceptable to have two data streams: operational (best available methods; mission-dependent) climate (maximum commonality/consistency of methods)?
- 5) How much consistency can we achieve without resorting to postprocessing methods (blending of in situ data, assimilation)?

Is this necessary?