Ocean Biology Processing Group
Evaluations of CZCS & OCTS

Chuck McClain, Gene Feldman, Bryan Franz, Sean Bailey, Jeremy Werdell, Fred Patt, Wayne Robinson

MODIS Science Team Meeting
October 31-November 2, 2006
OBPG Perspective & Objectives

• Apply vicarious calibration techniques & atmospheric correction & bio-optical algorithms used for SeaWiFS & MODIS, as possible.
 – Develop new approaches & algorithms, if necessary
 – New methods & algorithm must provide comparable results to operational versions

• Focus on Lwn’s as primary quantities of interest

• Evaluate data sets for climate research
OBPG Accomplishments under the REASoN-CAN

• CZCS
 – Generated a merged local area coverage (MLAC) data set
 • All duplicate scenes/subscenes eliminated using “best data” criteria
 – Renavigated entire mission using ephemeris from Nimbus-7/SMMR
 – MLAC data set placed on-line with browse and order capabilities similar to SeaWiFS & MODIS
 – Evaluated sensor degradation and vicarious calibration using current processing algorithms and models
 – Evaluated derived product data quality (Lwn’s and chlorophyll-a)

• OCTS
 – Evaluated sensor degradation and vicarious calibration using current processing algorithms and models
Previous CZCS & OCTS Processings

• **CZCS**
 - Gregg et al. (2002)
 - Laboratoire d’Oceanographie de Villefranche-U. Miami (2005)
Previous CZCS & OCTS Processings cont.

- **OCTS**
 - NASDA
 - Gregg (1999)
 - NASA-NASDA (2000; SIMBIOS Project)
“Common” Processing Approach & Key Requirements

- **Prelaunch characterization & calibration**
 - Polarization sensitivity, response vs. scan, counts vs. radiance, relative spectral response, etc.

- **On-orbit performance**
 - Sensor loss of sensitivity vs. time
 - Vicarious calibration
 - CZCS: Clear-water radiances (very little concurrent radiometric data)
 - OCTS: MOBY &/or clear-water radiances (very little concurrent radiometric data)
 - SeaWiFS & MODIS: MOBY

- **Atmospheric corrections**
 - Standard multiple scattering Rayleigh, sun glint, & foam corrections
 - Aerosols
 - CZCS: 670 nm-based aerosol correction with turbid water reflectance correction
 - OCTS, SeaWiFS, MODIS: Gordon & Wang aerosol correction (2 NIR band scheme) with turbid water NIR correction, Morel bidirectional reflectance, TOMS ozone

- **Data quality masks and flags**
 - Clouds, sun glint, etc.

- **Chlorophyll-a**
 - Empirical maximum ratio algorithms, e.g., OC4v4

- **CZCS & OCTS product validation**
 - Clear-water radiance comparisons
 - Comparisons with SeaWiFS clear water Lwn’s, AOTs, etc.
 - Time series analyses
 - Comparisons with field data (generally sparse)

None of these sensors have the same set of bands for ocean color.
CZCS
(October, 1978 - June, 1986)

- Spectral coverage
 - Bio-optical: 443, 520, and 550 nm (20 nm bandwidths)
 - Small spectral difference between 520 & 550 limits chlorophyll-a algorithm accuracy at high concentrations
 - Aerosol correction: 670 nm (20 nm bandwidth)
 - Lack of additional NIR bands a major limitation for aerosol correction
 - Cloud flag: 750 nm (100 nm bandwidth)

- Special features
 - Polarization scrambler: Significant polarization residuals remain
 - 4 science gains (Gains 2-4 ratios relative to Gain 1: 0.7, 0.55, 0.25)
 - Most data collected with Gains 1 & 2
 - Tilting for sun glint avoidance up to ±20º in 2º increments (mirror tilt)
 - Internal calibration lamps
 - Proved useless on-orbit
 - Noon-time ascending orbit (~955 km altitude) with west to east scan

- Temporal & spatial coverage
 - 825 m resolution @ nadir; ~±39º scan range, 1636 km swath
 - Mission baseline of 10% global coverage
 - Coverage extremely uneven over time and space (e.g., N.H. vs. S.H.)

- Additional information
 - Limited prelaunch characterization
 - Available: radiance response, spectral response functions, SNR, polarization sensitivity (partial), modulation transfer function
 - Not available: response vs. scan, temperature dependence, point spread function, etc.
 - Substantial electronic “over-shoot” off bright targets
 - Bands saturate over clouds
 - 8-bit digitization
 - SNRs, Bands 1-4: 260, 260, 233, 143
CZCS Polarization Uncertainty
(Information from Ball Bros. final report)

- Piece-part depolarization scrambler test indicates 0.5% sensitivity to monochromatic light (wavelength not provided).
- System-level tests show greatest polarization sensitivity at 443 nm, 2-3% for 0 & ±10° mirror tilt (corresponds to ±20° viewing angle change).
 - No information provided on polarization phase function.
 - Validity of system-level test uncertain due to problems with test set-up.
CZCS Mission History

http://oceancolor.gsfc.nasa.gov/CZCS/czcs_processing/
CZCS Coverage: Total Mission
SeaWiFS Coverage: Total Mission

Note: Scale 3x CZCS coverage scale
Monthly Coverage Comparisons for CZCS and SeaWiFS

Coastal Zone Color Scanner

December

SeaWiFS 2005

SeaWiFS 2006

June

CZCS/SeaWiFS Coverage Time Series
Normalized to SeaWiFS Monthly Coverage (9 km bins)
CZCS Degradation: EG94 & model-based estimates

Model-based degradation derived at BATS (Sargasso Sea) using in situ chlorophyll observations

Solid lines are EG94
* 670nm includes Antione 2005 adjustment
Circles are an exponential fit derived from model-based calibration
Model-based CZCS Calibration*: BATS
Comparisons with SeaWiFS

*Time dependence & vicarious gains

Level 2 Time Series @ BATS
CZCS NET Field Data Match-ups

- Current radiometric QC & match-up selection criteria applied
- Roughly 10% of NET stations selected (% similar to that of recent data sets)
Multiple Lwn Distribution Peaks &
N.H. - S.H. Disparity

Figure 2a. Global frequency distribution of normalized water-leaving radiance at 520 nm for a 10-day period in mid-June 1981. Horizontal error bar represents the estimated error around the computed value (solid circle). Solid and dotted curves are for $L_e(I) < 0.3$ and 1.0 mW cm$^{-2}$ μm$^{-1}$ sr$^{-1}$, respectively.

Spring 1981

Fall 1979

Fall 1981
El Chichon Stratospheric Aerosols: Non-negligible Effect

The Ocean-Atmosphere Model
CZCS: El Chichon Aerosols

Aerosol Size Distributions & Phase Functions

M90: Marine aerosol with 90% humidity
GW96: Gordon & Wang 1994
GC88: Gordon & Costaño, 1988
Change in the TOA Reflectance due to El Chichon Aerosols (CZCS, 443 nm)

Delta reflectance computed between two cases: M90 tropospheric layer only vs. El Chichon (King) stratospheric layer only.
CZCS: Comparison of CZCS & SeaWiFS Global Oligotrophic Lwn’s

SeaWiFS- solid CZCS-dashed

443 nm
510 nm
520 nm
550 nm
555 nm
670 nm
CZCS: Comparison of CZCS & SeaWiFS Global Oligotrophic Epsilons

CZCS epsilon values primarily determined by the fixed M90 model used in the processing.
CZCS: Extreme Seasonality at 443 nm
Model-based time dependence & vicarious calibration

Mediterranean Sea
CZCS Lwn’s: Large Biases
Model time dependence with model-based vicarious calibration

SeaWiFS- Solid CZCS-Dashed

North Pacific
CZCS Electronic Overshoot (ringing):
Revised Mueller (1988) algorithm

Lwn(520): no mask
Lwn(520): masked
CZCS Chlorophyll-a Algorithm: 520/550 band ratio problem

- The 520-550 band pair provides little spectral separation
- Ratio results in minimal algorithm sensitivity: small errors in ratio produces large errors in chlorophyll

Comparison of maximum band ratio algorithms
CZCS: OBPG Summary

- Global coverage inadequate for global climate data record status
 - N. H. coverage may be suitable for certain hemispheric studies during early phase of mission
- Data quality varies with location based on comparisons with SeaWiFS
 - Comparisons quite good at validation site (Bermuda)
 - At other locations, large biases, either uniform or seasonal, observed
 - Implication: sensor characterization inadequate
- Sensor degradation and behavior difficult (or impossible) to explain
- El Chichon aerosols do impact CZCS retrievals contrary to Gordon & Costaño (1988)
- Lack of validation data prohibits accurate assessment of radiometry and data quality

OBPG assessment: CZCS global data cannot be brought up to a level of accuracy comparable to SeaWiFS and MODIS & should not be used for global climate research. A few regions for certain periods may be acceptable.
OCTS

• Spectral coverage
 – Bio-optical: 412, 443, 490, 520, 565, and 670 nm (20 nm bandwidths)
 – Aerosol correction: 765 & 865 nm (40 nm bandwidth)
 – 10 detectors/band

• Special features
 – Gains: 4
 – Tilting for sun glint avoidance up to ±20°, 0°
 • Tilts the scan mirror, not the instrument
 • Creates spatial separation of spectral data as scan angle increases
 – Introduces noise in the retrievals due to resampling required to achieve approximate co-registration
 – Internal calibration lamps (not useful)
 – Solar diffuser (not useful)
 – 10:40 descending orbit

• Temporal & spatial coverage
 – 700 m resolution @ nadir; 1400 km swath
 – GAC data: 4th line, 5th pixel subsampling (only data available to OBPG)

• Additional information
 – Limited prelaunch characterization
 • Available: radiance vs. counts, spectral response functions
 • Not available: response vs. scan, temperature dependence, polarization sensitivity, point spread function, etc.
 – 10-bit digitization
 – SNRs, Bands 1-6: 779, 1373, 1453, 994, 988, 1603, 706, 637
 – Significant uncorrected straylight (ghosting)
OBPG line: $L_{\text{wn}}(412)$ without NASDA nadir tilt calibration adjustment
$L_{\text{wn}}(412)$ analyses based on NIR atmospheric corrections w/o trends removed.

http://oceancolor.gsfc.nasa.gov/OCTS/octs_processing.html
Analyses based on assuming zero ocean reflectance in open ocean. Single trend characterizations of 765 and 865 time dependence inadequate. Dual trend corrections (pre- & post-heating) required.
Aerosol Optical Thicknesses (865 nm):
Deep-Water Averages

Aerosol optical thicknesses similar to SeaWiFS: No pronounced trend or discontinuity
OCTS Lwn Time Series: Comparison with SeaWiFS (1999-2000) in Oligotrophic Waters

Global average

Hawaii

SeaWiFS-solid OCTS-dashed

Dual NIR trend analysis
OCTS Lwn Time Series: Comparison with SeaWiFS (1999-2000) in High Latitude Waters

Dual NIR trend analysis

North Atlantic: 55°N

South Atlantic: 55°S

OCTS/SeaWiFS Ratio
OCTS: OBPG Summary

- Lack of radiometric validation data makes quantification of data accuracy difficult to impossible
 - No overlap with SeaWiFS
 - Simultaneous global POLDER data
 - See Wang et al. (2002)