Ocean Biology Processing Group Evaluations of CZCS & OCTS

Chuck McClain, Gene Feldman, Bryan Franz, Sean Bailey, Jeremy Werdell, Fred Patt, Wayne Robinson

> MODIS Science Team Meeting October 31-November 2, 2006

OBPG Perspective & Objectives

- Apply vicarious calibration techniques & atmospheric correction & bio-optical algorithms used for SeaWiFS & MODIS, as possible.
 - Develop new approaches & algorithms, if necessary
 - New methods & algorithm must provide comparable results to operational versions
- Focus on Lwn's as primary quantities of interest
- Evaluate data sets for climate research

OBPG Accomplishments under the REASoN-CAN

• CZCS

- Generated a merged local area coverage (MLAC) data set
 - All duplicate scenes/subscenes eliminated using "best data" criteria
- Renavigated entire mission using ephemeris from Nimbus-7/SMMR
- MLAC data set placed on-line with browse and order capabilities similar to SeaWiFS & MODIS
- Evaluated sensor degradation and vicarious calibration using current processing algorithms and models
- Evaluated derived product data quality (Lwn's and chlorophyll-a)
- OCTS
 - Evaluated sensor degradation and vicarious calibration using current processing algorithms and models

Previous CZCS & OCTS Processings

• CZCS

- GSFC-U. Miami (1989)
 - Feldman, G., & others, Ocean Color: Availability of the global data set, *EOS, Trans. Am. Geophys. Union*, 70(23), 634, 1989.
 - Evans, R. H., & H. R. Gordon, Coastal zone color scanner "system calibration": A retrospective examination, *J. Geophys. Res.*, 99(C4), 7293-7307, 1994. Referred to as EG94.
- Gregg et al. (2002)
 - Gregg, W. W., M. E. Conkright, J. E. O'Reilly, F. S. Patt, M. H. Wang, J. A. Yoder, and N. W. Casey, NOAA-NASA Coastal Zone Color Scanner reanalysis effort, *Appl. Opt.*, 41(9), 1651-1628, 2002.
- Laboratoire d'Oceanographie de Villefranche-U. Miami (2005)
 - Antoine, D., A. Morel, H. R. Gordon, V. F. Banzon, & R. H. Evans, Bridging ocean color observations of the 1980s and 2000s in search of long-term trends, *J. Geophys. Res.*, 110, C06009, 22 pp., 2005.

Previous CZCS & OCTS Processings *cont*.

• OCTS

- NASDA
 - Shimada, M., H. Oaku, Y. Mitomi, & H. Murakami, Calibration of the Ocean Color & Temperature Scanner, *IEEE Trans. Geosci. & Remote Sens.*, 37(3), 1484-1495, 1999.
- Gregg (1999)
 - Gregg, W. W., Initial analysis of ocean color data from the ocean color and temperature scanner. I. Imagery analysis, Appl. Opt., 38(3), 476-485, 1999.
 - Gregg W. W., F. S. Patt, & W. E. Esaias, Initial analysis of ocean color data from the ocean color and temperature scanner. II. Geometric and radiometric analysis, *Appl. Opt.*, 38(27), 5692-5702, 1999.
- NASA-NASDA (2000; SIMBIOS Project)
 - Wang, M., A. Isaacman, B. A. Franz, & C. R. McClain, Ocean-color property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of Earth's Reflectances: a comparison study, *Appl. Opt.*, 41(6), 974-990, 2002.

"Common" Processing Approach & Key Requirements

• Prelaunch characterization & calibration

- Polarization sensitivity, response vs. scan, counts vs. radiance, relative spectral response, etc.

• On-orbit performance

- Sensor loss of sensitivity vs. time
- Vicarious calibration
 - CZCS: Clear-water radiances (very little concurrent radiometric data)
 - OCTS: MOBY &/or clear-water radiances (very little concurrent radiometric data)
 - SeaWiFS & MODIS: MOBY

• Atmospheric corrections

- Standard multiple scattering Rayleigh, sun glint, & foam corrections
- Aerosols
 - CZCS: 670 nm-based aerosol correction with turbid water reflectance correction
 - OCTS, SeaWiFS, MODIS: Gordon & Wang aerosol correction (2 NIR band scheme) with turbid water NIR correction, Morel bidirectional reflectance, TOMS ozone

• Data quality masks and flags

- Clouds, sun glint, etc.
- Chlorophyll-a
 - Empirical maximum ratio algorithms, e.g., OC4v4

• CZCS & OCTS product validation

- Clear-water radiance comparisons
- Comparisons with SeaWiFS clear water Lwn's, AOTs, etc.
- Time series analyses
- Comparisons with field data (generally sparse)

None of these sensors have the same set of bands for ocean color.

CZCS (October,1978 - June,1986)

- Spectral coverage
 - Bio-optical: 443, 520, and 550 nm (20 nm bandwidths)
 - Small spectral difference between 520 & 550 limits chlorophyll-a algorithm accuracy at high concentrations
 - Aerosol correction: 670 nm (20 nm bandwidth)
 - Lack of additional NIR bands a major limitation for aerosol correction
 - Cloud flag: 750 nm (100 nm bandwidth)
- Special features
 - Polarization scrambler: <u>Significant polarization residuals remain</u>
 - 4 science gains (Gains 2-4 ratios relative to Gain 1: 0.7, 0.55, 0.25)
 - Most data collected with Gains 1 & 2
 - Tilting for sun glint avoidance up to $\pm 20^{\circ}$ in 2° increments (mirror tilt)
 - Internal calibration lamps
 - Proved useless on-orbit
 - Noon-time ascending orbit (~955 km altitude) with west to east scan
- Temporal & spatial coverage
 - 825 m resolution @ nadir; ~±39° scan range, 1636 km swath
 - Mission baseline of 10% global coverage
 - Coverage extremely uneven over time and space (e.g., N.H. vs. S.H.)
- Additional information
 - Limited prelaunch characterization
 - Available: radiance response, spectral response functions, SNR, polarization sensitivity (partial), modulation transfer function
 - Not available: response vs. scan, temperature dependence, point spread function, etc.
 - Substantial electronic "over-shoot" off bright targets
 - Bands saturate over clouds
 - 8-bit digitization
 - SNRs, Bands 1-4: 260, 260, 233, 143

CZCS Polarization Uncertainty

(Information from Ball Bros. final report)

- Piece-part depolarization scrambler test indicates 0.5% sensitivity to monochromatic light (wavelength not provided).
- System-level tests show greatest polarization sensitivity at 443 nm, 2-3% for 0 & $\pm 10^{\circ}$ mirror tilt (corresponds to $\pm 20^{\circ}$ viewing angle change).
 - No information provided on polarization phase function.
 - Validity of system-level test uncertain due to problems with test set-up.

CZCS Mission History

http://oceancolor.gsfc.nasa.gov/CZCS/czcs_processing/

CZCS Coverage: Total Mission

Number of CZCS Scenes per 9-Kilometer Bin

1	50	1Ò0	150	200	250	300	350	4Ò0	450	5Ò0	550

SeaWiFS Coverage: Total Mission

Number of SeaWiFS Scenes per 9-Kilometer Bin

Note: Scale 3x CZCS coverage scale

Monthly Coverage Comparisons for CZCS and SeaWiFS

Coastal Zone Color Scanner

December

CZCS/SeaWiFS Coverage Time Series Normalized to SeaWiFS Monthly Coverage (9 km bins)

CZCS Degradation: EG94 & model-based estimates

Model-based degradation derived at BATS (Sargasso Sea) using in situ chlorophyll observations

Model-based CZCS Calibration*: BATS Comparisons with SeaWiFS

*Time dependence & vicarious gains

Level 2 Time Series @ BATS

CZCS NET Field Data Match-ups

- Current radiometric QC & match-up selection criteria applied
- Roughly 10% of NET stations selected (% similar to that of recent data sets)

Multiple Lwn Distribution Peaks & N.H. - S.H. Disparity

Lwn(520)

From EG94, June & Oct. 1981

Figure 2a. Global frequency distribution of normalized water-leaving radiance at 520 nm for a 10-day period in mid-June 1981. Horizontal error bar represents the estimated error around the computed value (solid circle). Solid and dotted curves are for $L_a(4) < 0.3$ and 1.0 mW cm⁻² μ m⁻¹ sr⁻¹, respectively.

 $[L_w(520)]_N$ (mW/cm²µm Sr) Figure 2c. Global frequency distribution of normalized water-leaving radiance at 520 nm for a 10-day period in early October 1981. Horizontal error bar represents the estimated error around the computed value (solid circle). Solid and dotted curves are for $L_a(4) < 0.3$ and 1.0 mW cm⁻² µm⁻¹ sr⁻¹, respectively.

0.50

Fall 1981

Spring 1981

Flat Ocean Surface

CZCS: El Chichon Aerosols

Aerosol Size Distributions & Phase Functions

M90: Marine aerosol with 90% humidity GW96: Gordon & Wang 1994 GC88: Gordon & Costaño, 1988

Change in the TOA Reflectance due to El Chichon Aerosols (CZCS, 443 *nm*)

Delta reflectance computed between two cases: M90 trophospheric layer only vs. El Chichon (King) stratospheric layer only.

CZCS: Comparison of CZCS & SeaWiFS Global Oligotrophic Lwn's

CZCS: Comparison of CZCS & SeaWiFS Global Oligotrophic Epsilons

CZCS epsilon values primarily determined by the fixed M90 model used in the processing.

CZCS: Extreme Seasonality at 443 nm Model-based time dependence & vicarious calibration

Mediterranean Sea

CZCS Lwn's: Large Biases Model time dependence with model-based vicarious calibration

North Pacific

CZCS Electronic Overshoot (ringing): Revised Mueller (1988) algorithm

Lwn(520): no mask

Lwn(520): masked

CZCS Chlorophyll-a Algorithm: 520/550 band ratio problem

- The 520-550 band pair provides little spectral separation
- Ratio results in minimal algorithm sensitivity: small errors in ratio produces large errors in chlorophyll

Comparison of maximum band ratio algorithms

CZCS: OBPG Summary

- Global coverage inadequate for global climate data record status
 - N. H. coverage may be suitable for certain hemispheric studies during early phase of mission
- Data quality varies with location based on comparisons with SeaWiFS
 - Comparisons quite good at validation site (Bermuda)
 - At other locations, large biases, either uniform or seasonal, observed
 - Implication: sensor characterization inadequate
- Sensor degradation and behavior difficult (or impossible) to explain
- El Chichon aerosols do impact CZCS retrievals contrary to Gordon & Costaño (1988)
- Lack of validation data prohibits accurate assessment of radiometry and data quality

OBPG assessment: CZCS global data cannot be brought up to a level of accuracy comparable to SeaWiFS and MODIS & should not be used for global climate research. A few regions for certain periods may be acceptable.

OCTS November, 1996 – June, 1997

- Spectral coverage
 - Bio-optical: 412, 443, 490, 520, 565, and 670 nm (20 nm bandwidths)
 - Aerosol correction: 765 & 865 nm (40 nm bandwidth)
 - 10 detectors/band
- Special features
 - Gains: 4
 - Tilting for sun glint avoidance up to $\pm 20^{\circ}$, 0°
 - Tilts the scan mirror, not the instrument
 - Creates spatial separation of spectral data as scan angle increases
 - Introduces noise in the retrievals due to resampling required to achieve approximate co-registration
 - Internal calibration lamps (not useful)
 - Solar diffuser (not useful)
 - 10:40 descending orbit
- Temporal & spatial coverage
 - 700 m resolution @ nadir; 1400 km swath
 - GAC data: 4th line, 5th pixel subsampling (only data available to OBPG)
- Additional information
 - Limited prelaunch characterization
 - Available: radiance vs. counts, spectral response functions
 - Not available: response vs. scan, temperature dependence, polarization sensitivity, point spread function, etc.
 - 10-bit digitization
 - SNRs, Bands 1-6: 779, 1373, 1453, 994, 988, 1603, 706, 637
 - Significant uncorrected straylight (ghosting)

OCTS Mission Timeline

OBPG line: Lwn(412) without NASDA nadir tilt calibration adjustment Lwn(412) analyses based on NIR atmospheric corrections w/o trends removed.

http://oceancolor.gsfc.nasa.gov/OCTS/octs_processing.html

OCTS NIR Trends

OCTS NIR Trend

Analyses based on assuming zero ocean reflectance in open ocean. Single trend characterizations of 765 and 865 time dependence inadequate. Dual trend corrections (pre- & post-heating) required.

OCTS(1996-1997) & SeaWiFS (1999-2000) Aerosol Optical Thicknesses (865 nm): Deep-Water Averages

Aerosol optical thicknesses similar to SeaWiFS: No pronounced trend or discontinuity

OCTS Lwn Time Series: Comparison with SeaWiFS (1999-2000) in Oligotrophic Waters

Dual NIR trend analysis

SeaWiFS-solid OCTS-dashed

OCTS Lwn Time Series: Comparison with SeaWiFS (1999-2000) in High Latitude Waters

Dual NIR trend analysis

OCTS/SeaWiFS Ratio

OCTS: OBPG Summary

- Lack of radiometric validation data makes quantification of data accuracy difficult to impossible
 - No overlap with SeaWiFS
 - Simultaneous global POLDER data
 - See Wang et al. (2002)
- Trends in water-leaving radiances coincide with El Niño onset: sensor & geophysical changes convolved.