

DIS

MODIS Science Team Meeting MCST Session November 1, 2006

Validation of Sea-Surface Temperatures from MODIS

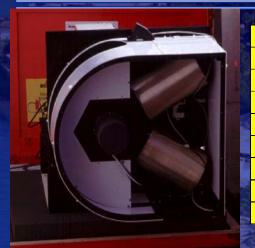
Peter J. Minnett & Robert H. Evans with Kay Kilpatrick, Ajoy Kumar, Warner Baringer, Erica Key, Goshka Szczodrak, Sue Walsh and Vicki Halliwell

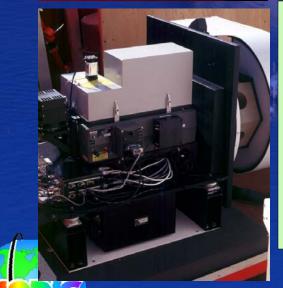
Rosenstiel School of Marine and Atmospheric Science University of Miami

Objective and Background

- To establish the residual uncertainties in MODIS SSTs, as functions of the 'governing' parameters
- MODIS SSTs derived from measurements in the 10-13 μm atmospheric window (SST) and in the 3.5-4.1 μm atmospheric window (SST4) at night
- Residual errors result from imperfections in the instrument measurements of top of atmosphere radiances, and imperfections in atmospheric correction and cloud & aerosol identification algorithms.
- The validation of the geophysical retrievals is accomplished by comparison with accurate surface-based measurements of SST – data are archived and distributed in "Match-Up Data Bases"

Measure of satellite retrieval uncertainty


MODIS - GHRSST (GODAE High Resolution Sea Surface Temperature Pilot Project) approach:


- To provide a statistical estimate of expected bias and standard deviation for each satellite-retrieved SST
- Partition satellite in situ match-up database along 7 dimensions (environmental conditions and observing geometry)

 The "uncertainty hypercube" has been implemented for MODIS SST and SST4 products and applied to the AQUA and TERRA instruments

Marine-Atmospheric Emitted Radiance Interferometer (M-AERI)

C THERE COL. IN IS. MANAGEMENT THE TOP CONTROL STATES IN THE	
M-AERI C	haracteristics
Spectral interval	~3 to ~18µm
Spectral resolution	0.5 cm^{-1}
Interferogram rate	1Hz
Aperture	2.5 cm
Detectors	InSb, HgCdTe
Detector temperature	78°K
Calibration	Two black-body cavities
SST retrieval uncertainty	<<0.1K (absolute)

Laboratory confirmation of M-AERI accuracy

Target Temp.	LW	SW		
	(980-985 cm ⁻¹)	$(2510-2515 \text{ cm}^{-1})$		
20°C	+0.013 K	+0.010 K		
30°C	-0.024 K	-0.030 K		
60°C	-0.122 K	-0.086 K		

The mean discrepancies in the M-AERI 02 measurements of the NIST – characterized water bath blackbody calibration target in two spectral intervals where the atmosphere absorption and emission are low. Discrepancies are M-AERI minus NIST temperatures.

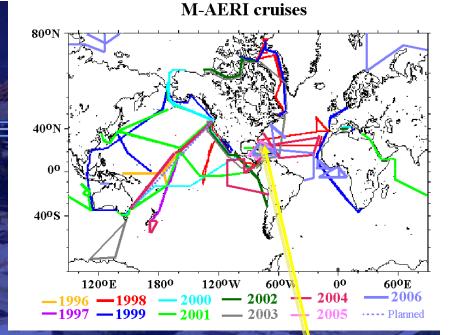
Constructed by SSEC; U. Wisconsin - Madison

Traceable to National Standards: NIST EOS TXR

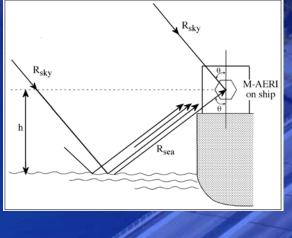
ODIS

Unique EOS Standard Cryogenic detectors (liquid N₂) $\lambda = 5 \& 10 \mu m$

Rice, J. P. and B. C. Johnson, 1998. The NIST EOS Thermal-Infrared Transfer Radiometer, *Metrologia*, 35, 505-509.



Surface radiometry


- Use ship-based radiometers, e.g. M-AERI, ISAR, CIRIMS and others.
- M-AERI is the reference standard for satellite SST retrievals (AVHRR, AATSR, as well as MODIS), and for other ship-board radiometers.
- M-AERI also being used for AMSR-E & AIRS SST validation.

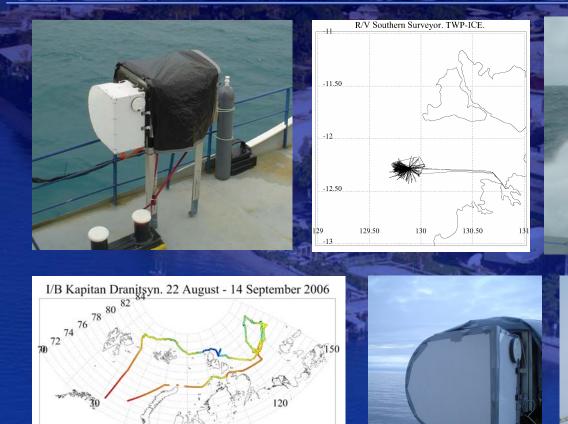
DIS

M-AERI cruises	
Number of deployments	40
Number of ships	23
Number of days	3353

M-AERI on Explorer of the Seas

Satellite skin SST accuracies

DIS


Statistics of M-AERI validation of MODIS and AMSR-E SST validation. *Explorer of the Seas* data from July 2002 to July 2005.

	Spectral	Diurnal	Bias	St. Dev	N
	interval	characteristic	K	K	
	11,12 μm	Night + Day	-0.025	0.48	1393
MODIS – M-AERI		Day	0.028	0.52	502
MODIS – M-AEKI		Night	-0.055	0.45	891
	4 µm	Night	-0.093	0.45	1003
AMSR-E – M-AERI		Night + Day	0.182	0.59	139

Validating sensor must contribute <<0.1K to the error budget of the comparison

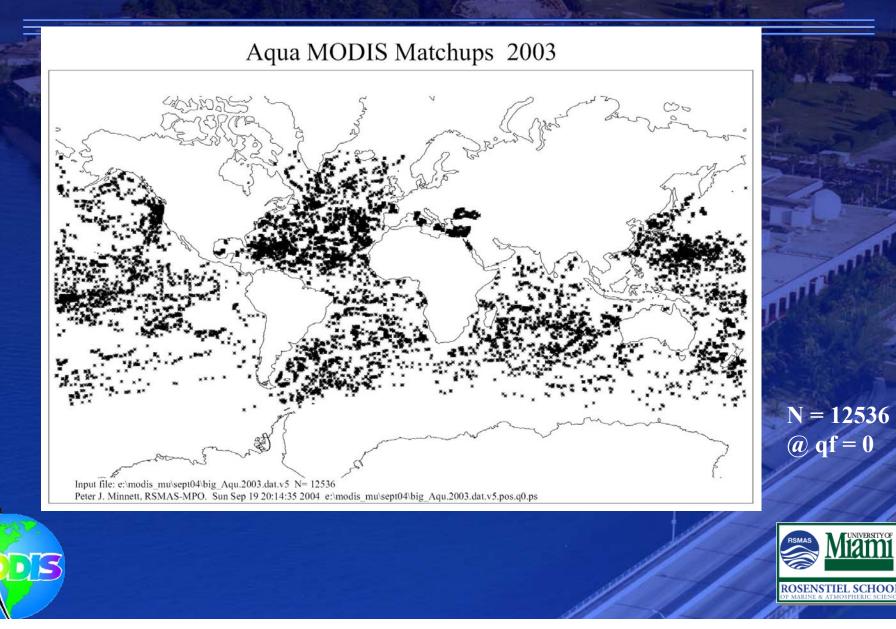
M-AERI at Sea – some issues.....

-5 Surface Temperature "C

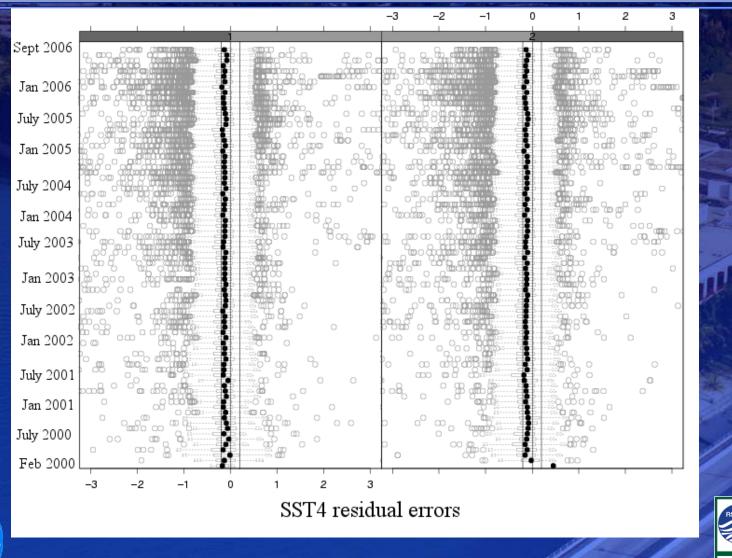
DIS

ISAR – an autonomous IR radiometer

JINGU MARU


- **ISAR Infrared** • **SST** Autonomous Radiometer
- Filter radiometer, • internal calibration
- Deployed on Jingu • Maru, Atlantic crossings
- **Currently on Mirai** ٠ in Indian Ocean

ODIS





MODIS SST4 - Buoy Residuals Feb 2000 - Aug 2006

DS

MODIS SST4 - Buoy Residuals Feb 2000 - Aug 2006

MODIS v5 global error statistics (buoys)

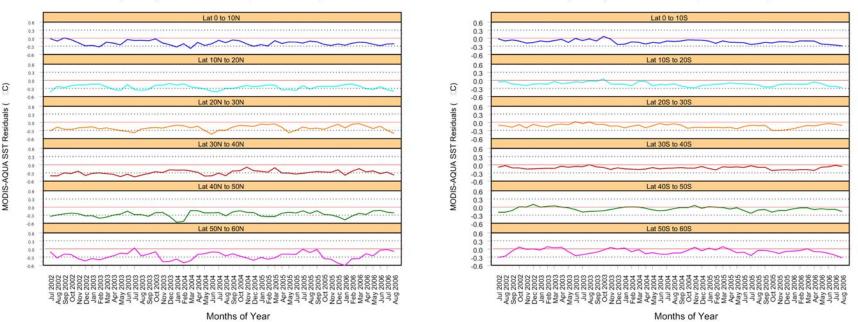
SST 11	l-12 µm	TERRA					
		day			night		
Year		mean	RMS	Count	mean	RMS	Count
	2000	-0.139	0.797	3091	-0.186	0.794	1800
	2001	-0.262	1.430	6321	-0.228	0.707	4935
	2002	-0.135	0.621	9244	-0.204	0.580	6935
	2003	-0.086	0.607	15685	-0.190	0.558	11058
	2004	-0.068	0.579		-0.167	0.559	16943
	2005	-0.110	0.549	39826	-0.213	0.519	28460
	2006	-0.105	0.574	32495	-0.208	0.524	23149
	all years	-0.108	0.650	131626	-0.200	0.555	93280
SST 11	l-12 μm	AQUA					
		day			night		
Year		mean	RMS	Count	mean	RMS	Count
	2002	-0.153	0.538	10293	-0.235	0.499	5906
	2003	-0.133	0.577	22988	-0.224	0.508	12977
	2004	-0.137	0.562	26415	-0.219	-0.484	15471
	2005	-0.152	0.539	40941	-0.235	0.461	25083
	2006	-0.135	0.550	34687	-0.205	0.452	22187
	all years	-0.142	0.553	135324	-0.222	0.475	81624
SST 4µ	ım	TERRA			AQUA		
Year		night		-	night		-
		mean	RMS	Count	mean	RMS	Count
	2000	-0.161	0.829	1993			
	2001	-0.220	0.663	5397			
	2002	-0.191	0.528		-0.224	0.449	6429
	2003	-0.176	0.500	12006	-0.217	0.455	14095
	2004	-0.178	0.493	18452	-0.214	0.426	16765
	2005	-0.178	0.471	31130	-0.223	0.414	27280
	2006	-0.174	0.473	25294	-0.208	0.404	24140
	all years	-0.179	0.505	101852	-0.216	0.423	88709

ODIS

MODIS v5 global error statistics (M-AERI)

	SST 11-12µm	TERRA					
1		day			night		
	Year	mean	RMS	Count	mean	RMS	Count
	2000	-0.015	0.613	116	-0.035	0.493	102
	2001	0.115	0.557	510	-0.036	0.475	651
	2002	0.174	0.448	236	0.020	0.502	362
	2003	0.016	0.513	382	-0.060	0.453	417
	2004	0.155	0.687	364	0.086	0.510	544
	2005	0.121	0.723	176	0.092	0.466	296
	2006	-0.032	0.515	164	-0.041	0.430	302
	all years	0.090	0.584	1948	0.006	0.408	2372
	SST 11-12µm	AQUA					
		day			night		
	Year	mean	RMS	Count	mean	RMS	Count
	2002	0.079	0.544	134	-0.061	0.440	80
	2003	-0.087	0.621	323	-0.262	0.473	284
	2004	0.087	0.615	249	0.034	0.534	465
	2005	0.171	0.578	113	0.061	0.469	258
	2006	-0.176	0.459	75	0.008	0.510	105
	all years	0.037	0.593	803	-0.039	0.513	1192
	SST 4µm	TERRA			AQUA		
	Year	night			night		
		mean	RMS	Count	mean	RMS	Count
	2000	-0.055	0.462	115			
	2001	-0.046	0.387	714			
	2002	0.004	0.390	397	-0.158	0.384	95
	2003	-0.123	0.358	453	-0.213	0.389	328
	2004	0.010	0.407	597	-0.019	0.486	509
	2005	0.008	0.458	350	-0.038	0.382	281
	2006	-0.017	0.373	316	0.007	0.432	110
	all years	-0.030	0.400	2942	0.063	0.442	1323

DIS



But bias & rms alone do not tell the whole story...

Zonally Averaged SST Anomalies (MODIS-AQUA)

DIS

Systematic patterns in residual uncertainties indicate shortcomings in the atmospheric correction algorithms, and indicate how they can be improved.....

MODIS Single Sensor Error Statistics Approach Bias and Standard Deviation Hypercube

Hypercube dimensions (partitioning of Match-up database):

- Time- quarter of year (4)
- Latitude band (5):
 - "60S to 40S" "40S to 20S" "20S to 20N" "20N to 40N" "40N to 60N"
- Sat Zenith angle intervals (4):

"0 to 30 deg" "30+ to 40 deg" "40+ to 50 deg" "50+ deg"

- Surface temperature intervals (8): 5 degree intervals
- Channel difference intervals:SST(3), SST4(4)

ch31-32 (SST): 0.7<, 0.7->2.0, >2.0 ch22-23 (SST4) 0.5 degree intervals: -0.5<, -0.5->0, >0 ->0.5, >0.5

-Quality level (2)

DIS

cube created only for ql=0 and 1 Note for ql2 and 3 the bias and standard deviation are each fixed to a single value -Day/Night

No interpolation between adjacent cells in Hypercube

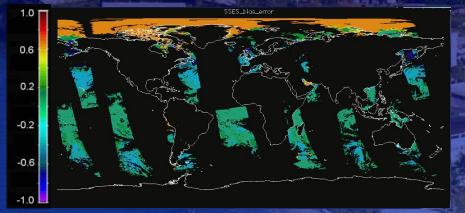
SSES for August 1

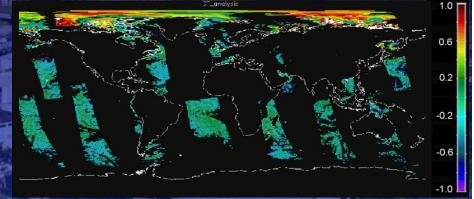
SSES Bias wrt In Situ

1.0

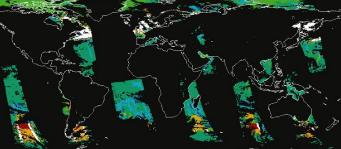
0.8

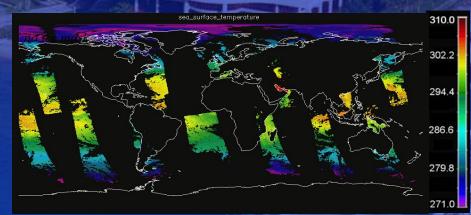
0.6

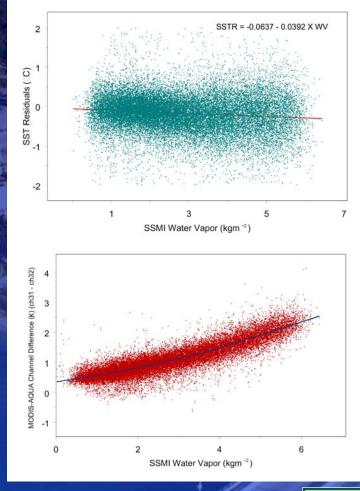

0.4


0.2

0.0

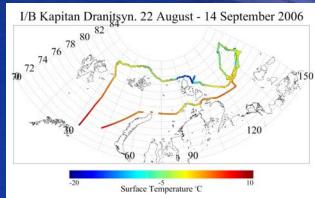

ODIS


MODIS SST – Reynolds OI SST



Water-vapor dependence...

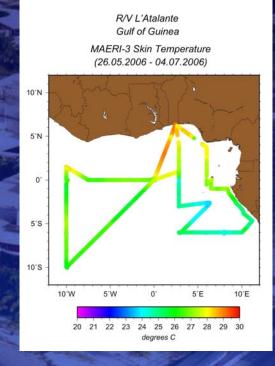
- Water vapor is one of the main atmospheric constituents that contribute to the atmospheric effect in the infrared.
- Water vapor is not an independent variable in the atmospheric correction algorithm, but is represented by a proxy (brightness temperature difference).
- Shortcoming in the current algorithm results in a systematic dependence, that should be correctible.

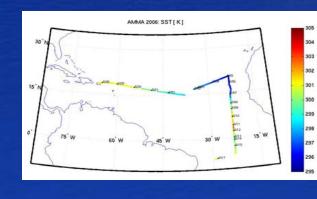


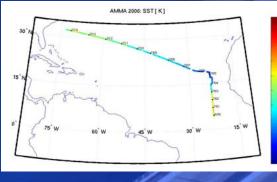
Indirect validation

In cloudy areas, such as high latitudes & regions of extensive marine stratus, the best approach for validating infrared SSTs (e.g. from Aqua MODIS) is to validate microwave SSTs (e.g. from Aqua ASMR-E), and compare the two.

Microwave SST accuracies

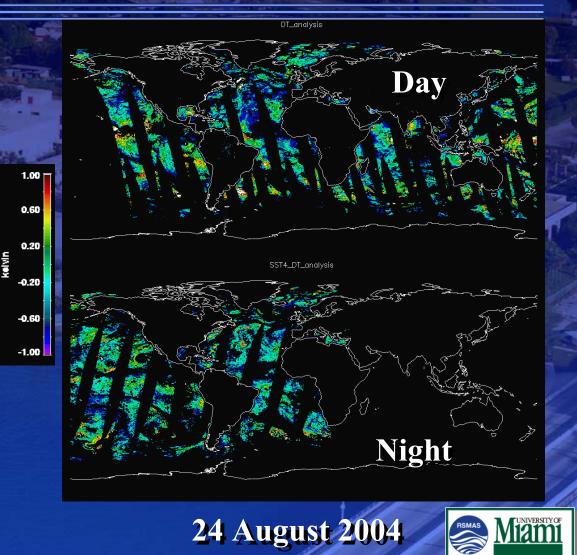

AMSR-E M-AERI comparisons during AMMA, May-July 2006.


Parts of the cruise tracks under clouds of ITCZ


DIS

		Mean	St.	N
			Dev.	
	N/O L'Atalante	K	K	
	Ascending arc (daytime)	0.033	0.478	18
	Descending arc (night)	0.143	0.350	18
	Both	0.088	0.421	36
1				
	NOAA S Ronald H Brown	n		
	Ascending arc (daytime)	0.105	0.439	15
	Descending arc (night)	0.081	0.281	17
	Both	0.092	0.358	32
	Both Ships			
	Ascending arc (daytime)	0.065	0.455	33
	Descending arc (night)	0.113	0.321	35
ł				
	All	0.090	0.390	68

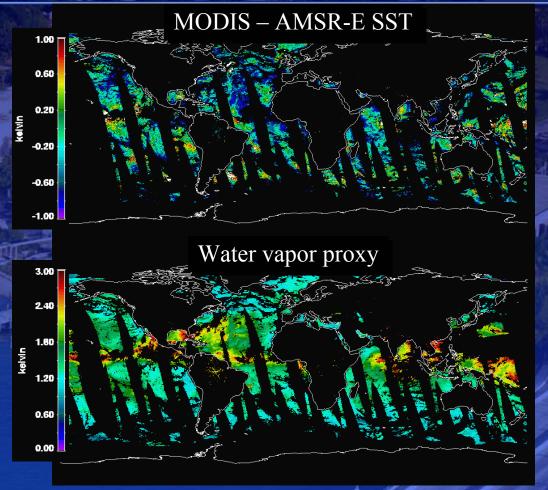
N


C1

MODIS to AMSR-E SST comparisons

Differences in MODIS and AMSR-E SSTs have spatial patterns, indicating geophysical causes.

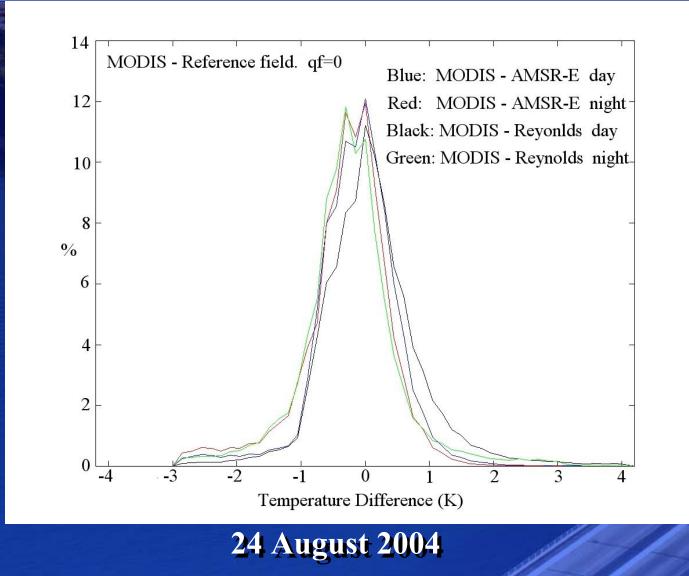
Some of the discrepancies are due to AMSR-E, some to MODIS


ROSENSTIEL SCHOO

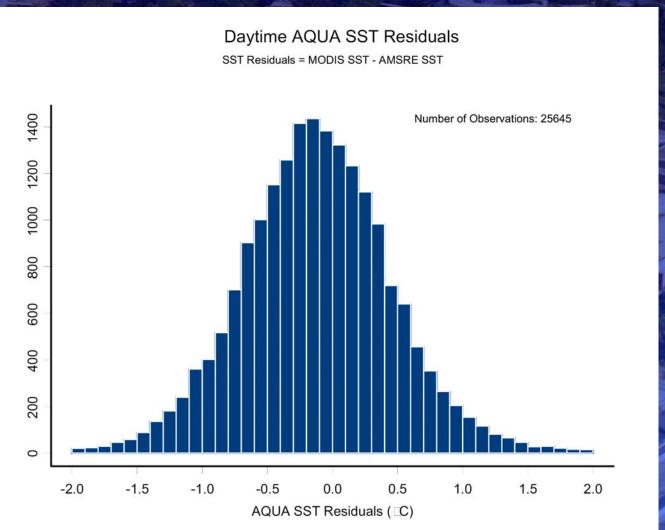
MODIS to AMSR-E SST comparisons

Differences in MODIS and AMSR-E SSTs have spatial patterns, that do not correlate with the water vapor proxy.

Other geophysical parameters also involved.



11-12µm brightness temperature differences 24 August 2004


MODIS, AMSR-E, Reynolds SST differences

ODIS

MODIS – AMSR-E SST differences

DB

<image>

Summary

- V5 monthly coefficients removed seasonal bias trends, *Terra* mirror side trends

- SST4 rms order 0.4K, SST order 0.5K
- SST4 less affected by dust aerosols, water vapor

- Improved quality filtering removed most cold clouds and significant dust aerosol concentrations

- Hypercube developed and tested for *Terra* and *Aqua*

- Introduction of SSES hypercube provides insight into bias and standard deviation trends as a function of time, latitude, temperature, satellite zenith angle, brightness temperature difference as a proxy for water vapor and retrieval quality level

Conclusions

- MODIS SSTs of "climate record" quality, having extensive error characterization, and traceability to NIST standards

- Current status is a tribute to efforts of MCST in characterizing the instrumental artifacts

- No evidence that Terra SSTs are of poorer quality than Aqua SSTs

- MODIS SSTs are an important component of GHRSST-PP

- An important focus of GHRSST-PP is quantifying effects of diurnal heating... benefits from *Terra* AND *Aqua*

- Hypercube provides insight leading to improved retrieval equation coefficient generation

Challenges:

DIS

- Many areas of climate interest are very cloudy – approach to follow is to use AMSR-E SSTs as a "transfer standard"

- M-AERIs are still the best source of validation data, but are "showing their age...."

Looking forward.....

- MODIS on *Terra* and *Aqua* making contributions to GHRSST-PP pre-operational products. These are very likely to become operational data streams for NWP.
- MODIS's provide the best heritage data for VIIRS algorithm testing.
- There is a distinct risk that MODIS's will not be operating during NPP VIIRS mission to provide overlap the best mechanism for continuing the integrity of the SST climate record will be high quality reference sensors with NIST traceability.
- M-AERI on *Explorer of the Seas* and research vessels, and ISAR on VOS's provide a valuable resource for continuing validation.

• Questions?

MODIS

ULUI