NASA's operational approach for the vicarious calibration of on-orbit ocean color satellites (using Gordon and Wang 1994)

Bryan Franz, Sean Bailey, the OBPG, and Jeremy Werdell

MODIS Science Team Meeting, 1 Nov 2006

The vicarious calibration ...

... makes use of a single set of fractional gains, where unity indicates no correction

 $L_t = counts * K_{rad} * K_{time} * K_{x,y,z} \dots * g$

(minimize difference between satellite L_w and ground-truth L_w)

The vicarious calibration

- ... makes use of a single set of fractional gains, where unity indicates no correction $L_t = counts * K_{rad} * K_{time} * K_{x,y,z} \dots * g$ (minimize difference between satellite L_w and ground-truth L_w)
- ... modifies the integrated instrument-atmospheric correction system (effectively accounts for undetermined post-launch instrument changes and atmospheric correction biases)

The vicarious calibration

... makes use of a single set of fractional gains, where unity indicates no correction $L_t = counts * K_{rad} * K_{time} * K_{x,y,z} \dots * g$ (minimized differences between setallite L and snown detruth L.)

(minimize difference between satellite L_w and ground-truth L_w)

- ... modifies the integrated instrument-atmospheric correction system (effectively accounts for undetermined post-launch instrument changes and atmospheric correction biases)
- ... assumes that temporal trends are independently removed

The vicarious calibration ...

- ... makes use of a single set of fractional gains, where unity indicates no correction $L_t = counts * K_{rad} * K_{time} * K_{x,y,z} \dots * g$ (minimize difference between setallite L and ground truth L)
 - (minimize difference between satellite L_w and ground-truth L_w)
- ... modifies the integrated instrument-atmospheric correction system (effectively accounts for undetermined post-launch instrument changes and atmospheric correction biases)
- ... assumes that temporal trends are independently removed
- ... was updated for SeaWiFS Reprocessing 4 (July 2002)

$$L_t = L_{r,g,wc,\dots} + L_a + t_d L_w$$

$$L_t = L_{r,g,wc,\dots} + L_a + t_d L_w$$

pre-Reprocessing 4 (launch – July 2002)

gain calculated using L_w

$$g = L_w^{target} / L_w$$

assign g and iterate until mean radiance ratio reaches unity

$$L_t = L_{r,g,wc,\dots} + L_a + t_d L_w$$

pre-Reprocessing 4 (launch – July 2002)

gain calculated using L_w

 $g = L_w^{target} / L_w$

assign g and iterate until mean radiance ratio reaches unity

post-Reprocessing 4 (July 2002 - present)

gain calculated at L_t

 $g = L_t^{target} / L_t$

satellite atmospheric parameters used to propagate L_w^{target} to TOA

* no iteration (less computationally expensive)

- * permits exploration of gain offset
- * requires disabling correction for non-negligible $L_w(NIR)$

methods agree to within 0.04%

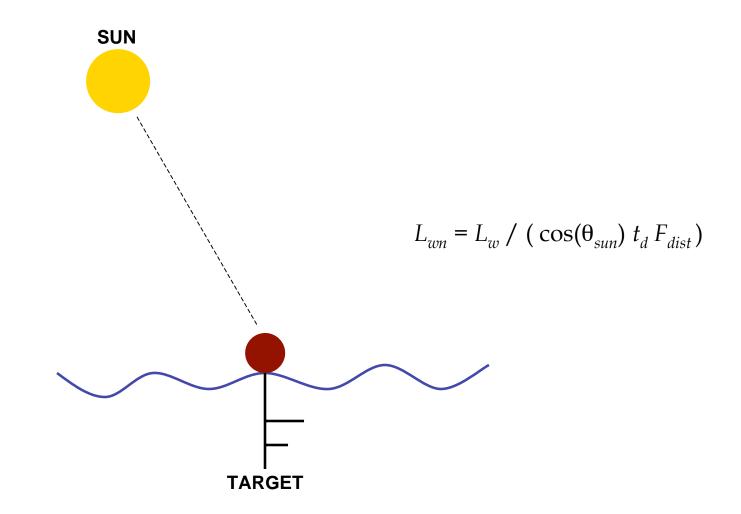
$$L_t = L_{r,g,wc,\dots} + L_a + t_d L_w$$

$$L_t^{target} = L_{r,g,wc,\dots} + \underline{L}_a + t_d L_w^{target}$$

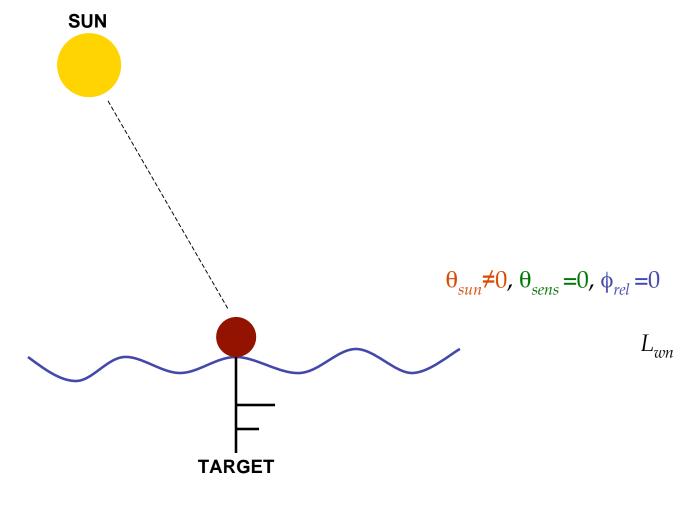
all terms are computed for the full relative spectral response of each sensor band

post-Reprocessing 4 (July 2002 - present)

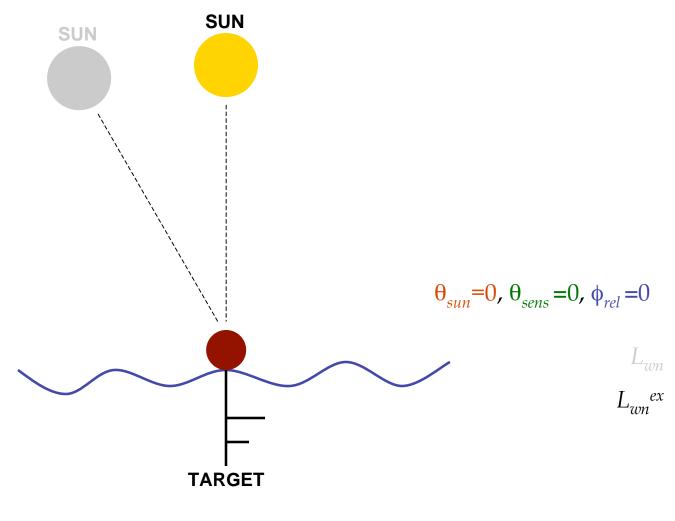
gain calculated at L_t

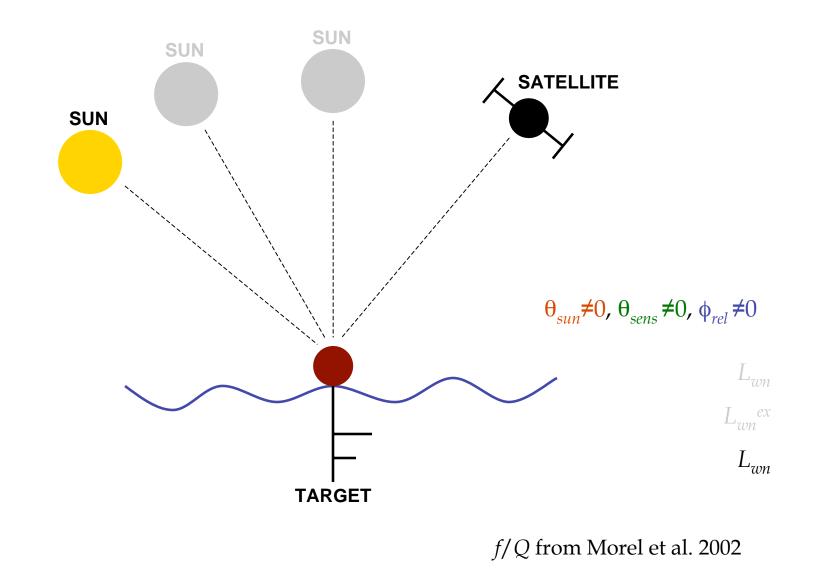

 $g = L_t^{target} / L_t$

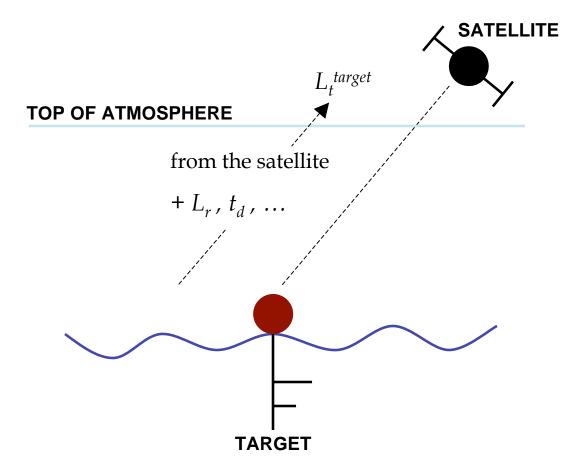
satellite atmospheric parameters used to propagate L_w^{target} to TOA

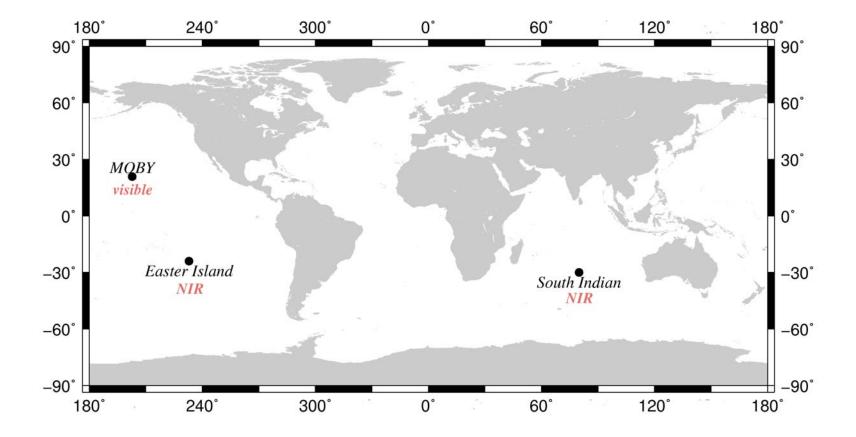

* no iteration (less computationally expensive)

- * permits exploration of gain offset
- * requires disabling correction for non-negligible $L_w(NIR)$

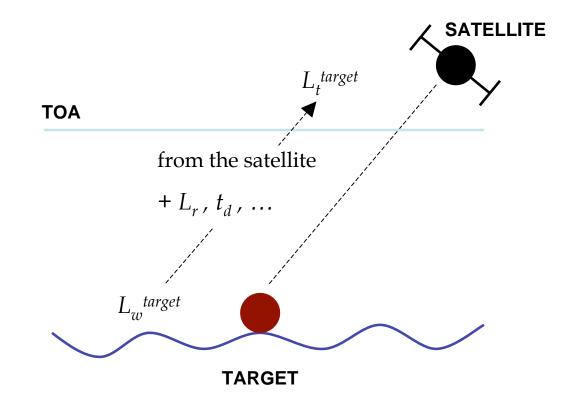

methods agree to within 0.04%


Vicarious Calibration, NASA OBPG, 1 Nov 2006




f/Q from Morel et al. 2002

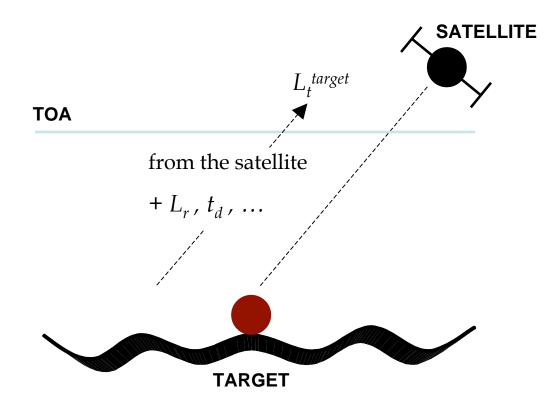
f/Q from Morel et al. 2002



our operational targets ...

Vicarious Calibration, NASA OBPG, 1 Nov 2006

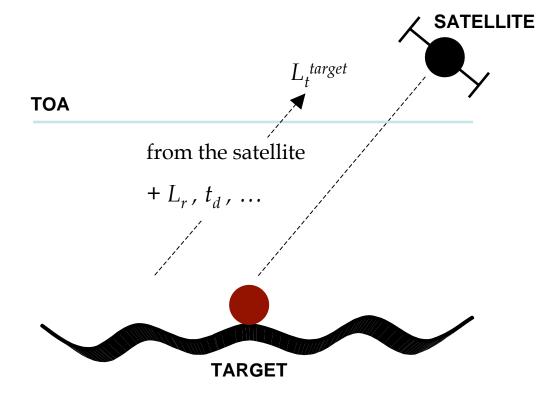
$$L_t(\text{NIR}) = L_{r,g,wc,\dots}(\text{NIR}) + L_a(\text{NIR}) + t_d L_w(\text{NIR})$$


assumptions:

$L_t(\text{NIR}) = L_{r,g,wc,...}(\text{NIR}) + L_a(\text{NIR}) + t_d L_w(\text{NIR})$ 0 M90assumptions:

(1) target sites exist where aerosol type is known

and L_w (NIR) is negligible



$L_t(\text{NIR}) = L_{r,g,wc,...}(\text{NIR}) + L_a(\text{NIR}) + t_d L_w(\text{NIR})$ 0 M90

assumptions:

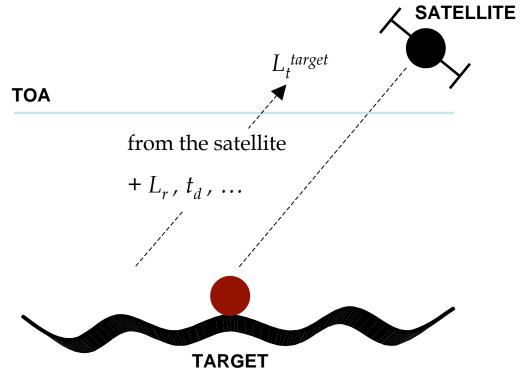
- (1) target sites exist where aerosol type is known and $L_w(NIR)$ is negligible
- (2) 865-nm perfectly calibrated,

```
such that g(865) = 1.0
```


$L_t(\text{NIR}) = L_{r,g,wc,\dots}(\text{NIR}) + L_a(\text{NIR}) + t_d L_w(\text{NIR})$

M90

assumptions:

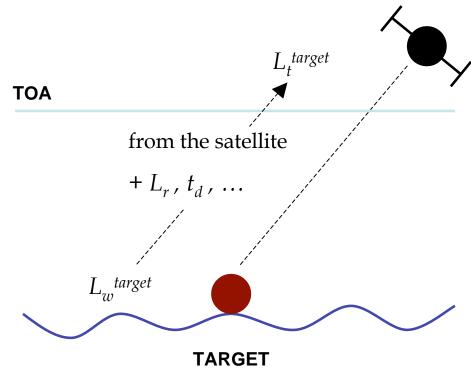

(1) target sites exist where aerosol type is known and L_w(NIR) is negligible
(2) 865-nm perfectly calibrated,

such that g(865) = 1.0

implementation:

knowledge of the aerosol type and $L_a(865)$ permits the estimation of $L_a(765)$

once $L_a(765)^{target}$ known, calculate $L_t(765)^{target}$

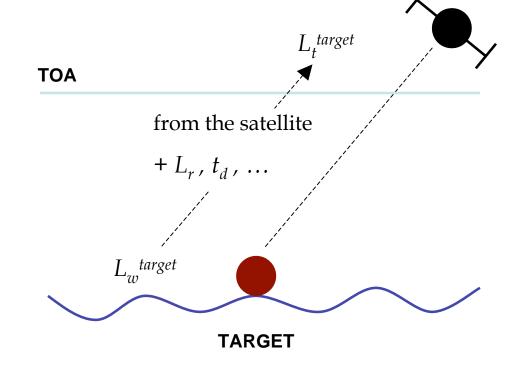


the NIR calibration is completed prior to the VIS calibration ... the g(NIR) are now fixed

the OBPG use data from the Marine Optical Buoy (MOBY) for the VIS calibration MOBY provides hyperspectral L_{wn} (VIS) measured during the satellite overpass $L_t(\text{VIS}) = L_{r,g,wc,\dots}(\text{VIS}) + L_a(\text{VIS}) + t_d L_w(\text{VIS})$

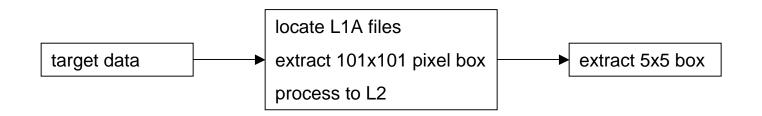
implementation:

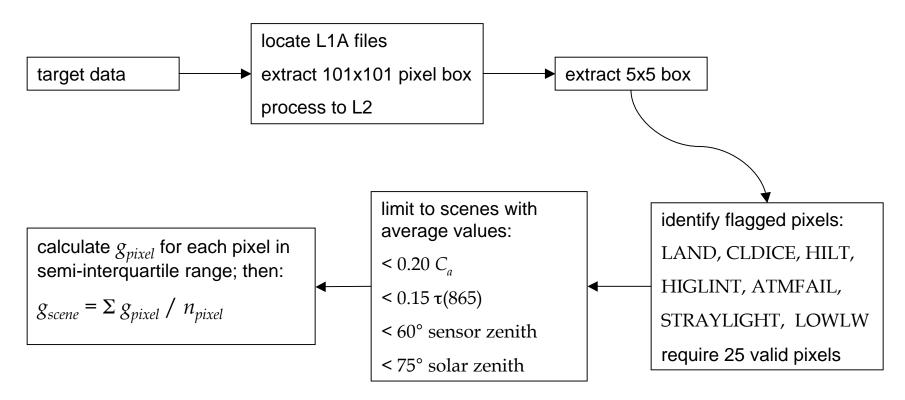
calibrated NIR bands used to determine local aerosol type and concentration, which provides L_a (VIS)^{target}

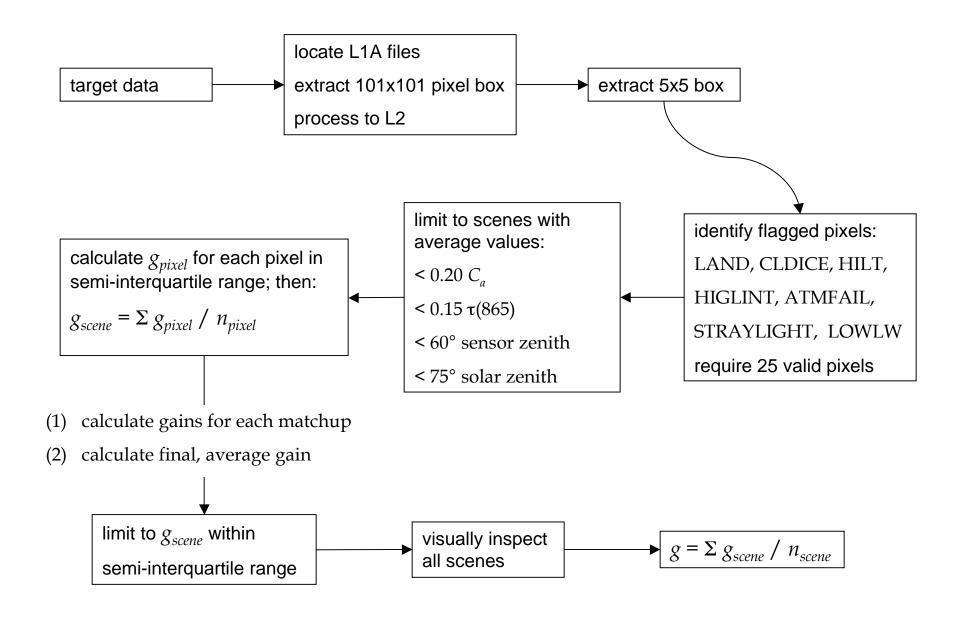


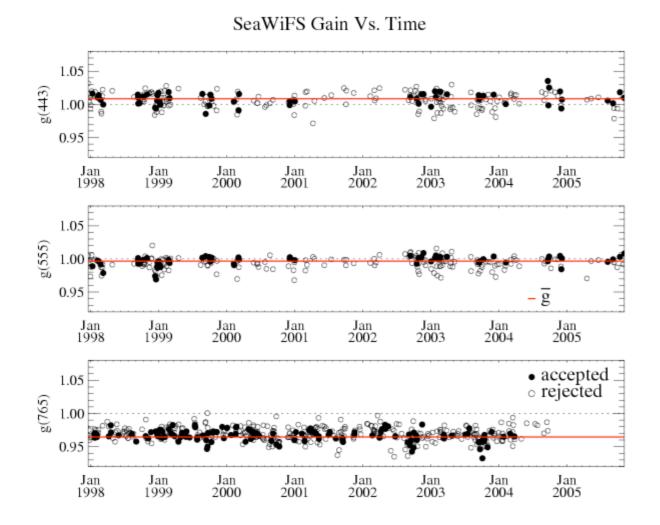
 $L_t(\text{VIS}) = L_{r,g,wc,\dots}(\text{VIS}) + L_a(\text{VIS}) + t_d L_w(\text{VIS})$

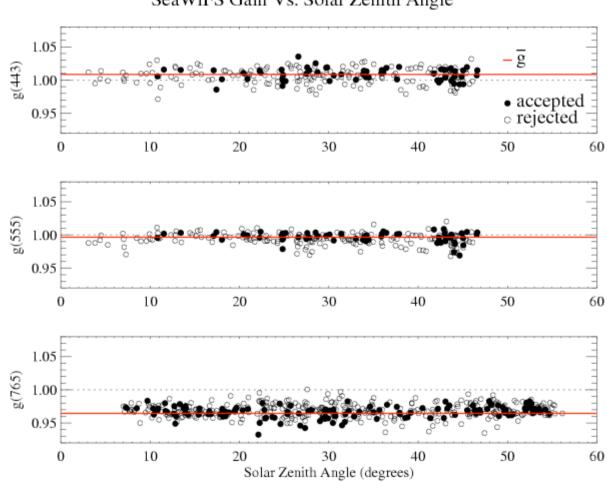
implementation:


calibrated NIR bands used to determine local aerosol type and concentration, which provides $L_a(VIS)^{target}$

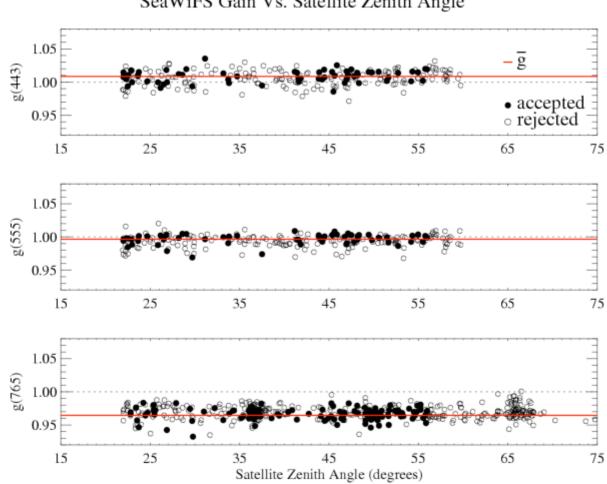

calculate L_t (VIS)^{target} using L_a (VIS)^{target}, L_w (VIS)^{target}, and satellite t_d , ...


various complications:


- (1) f/Q requires an estimation of C_a
- (2) non-hyperspectral targets (conceptually) require adjustment to the satellite spectral bandpass
- (3) non-clear water targets require an estimation of $L_w(NIR)$
- (4) polarization can be problematic as the correction depends on the observed radiances



(1) calculate gains for each matchup



Vicarious Calibration, NASA OBPG, 1 Nov 2006

SeaWiFS Gain Vs. Solar Zenith Angle

Vicarious Calibration, NASA OBPG, 1 Nov 2006

SeaWiFS Gain Vs. Satellite Zenith Angle

Vicarious Calibration, NASA OBPG, 1 Nov 2006

g remains stable as a function of time, both long-term and seasonally

- * verifies temporal calibration
- * suggests consistency in MOBY deployments
- * scatter (5%) underscores need for independent temporal calibration (SeaWiFS 443-nm has degraded 2% since launch)

g consistent with both solar and sensor zenith angles

variations with geometry might suggest problems with

- * the atmospheric correction
- * the *f*/*Q* correction
- * the *in situ* determination of L_w under certain sky conditions

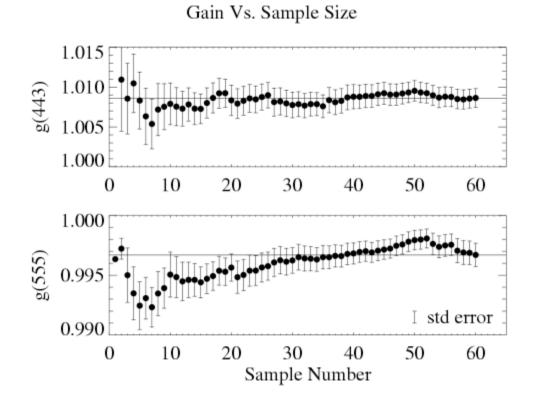
input the calibration scenes into validation system ...

	412	443	490	510	555	670
Ν	60	60	60	60	60	60
r^2	0.96	0.91	0.73	0.50	0.41	0.36
RMS	0.053	0.052	0.038	0.035	0.024	0.009
bias	0.02	0.02	0.01	0.01	0.00	0.00
MPD	2.1	1.9	2.2	3.1	5.4	37.2
ratio	1.008	1.011	1.009	1.010	1.003	1.081

Regression Statistics for SeaWiFS "Validation" Using MOBY Calibration Targets

satellite-to-*in situ* biases and mean ratios approach zero and unity, respectively

input the calibration scenes into validation system ...


	412	443	490	510	555	670
Ν	60	60	60	60	60	60
r^2	0.96	0.91	0.73	0.50	0.41	0.36
RMS	0.053	0.052	0.038	0.035	0.024	0.009
bias	0.02	0.02	0.01	0.01	0.00	0.00
- MPD	2.1	1.9	2.2	3.1	5.4	37.2
- ratio	1.008	1.011	1.009	1.010	1.003	1.081

Regression Statistics for SeaWiFS "Validation" Using MOBY Calibration Targets

satellite-to-*in situ* biases and mean ratios approach zero and unity, respectively RMSs and absolute MPDs not entirely negligible

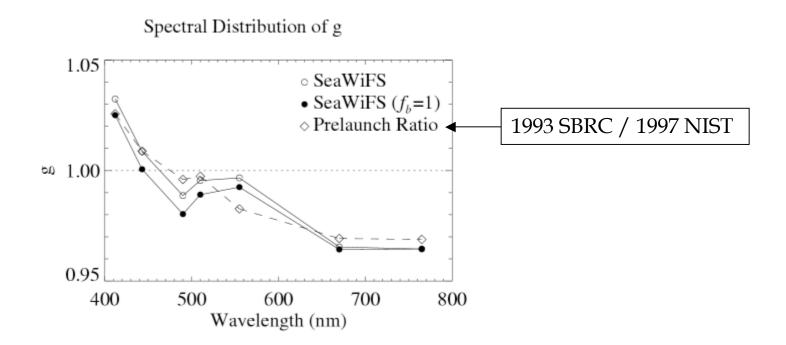
compare with MPD of 13% for deep water validation set at 443-nm

changes in g with increasing sample size ...

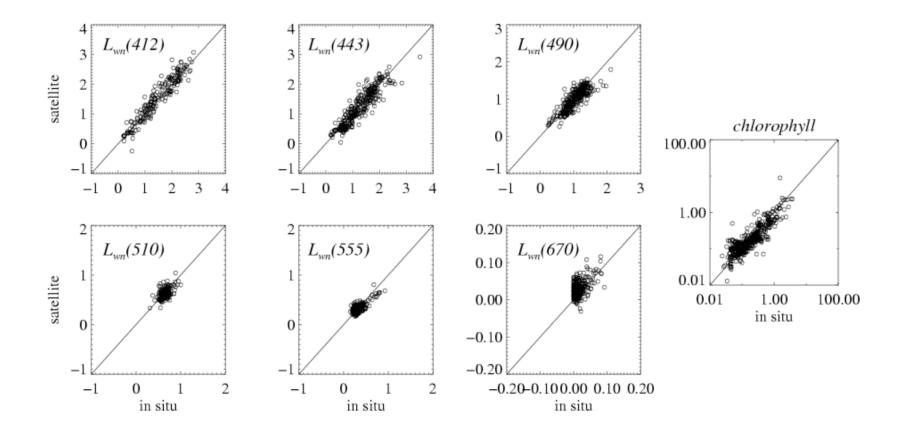
standard error of *g* decreases to 0.1% overall variability (min vs. max *g*) approaches 0.5% provides insight into temporal calibration

future ruminations ...

- ... statistical and visual exclusion criteria influence *g* only slightly, yet they reduce the standard deviations ... can uncertainties be quantified for the assigned thresholds?
- ... how do the uncertainties of the embedded models (e.g., f/Q, the NIR-correction, etc.) propagate into the calibration?

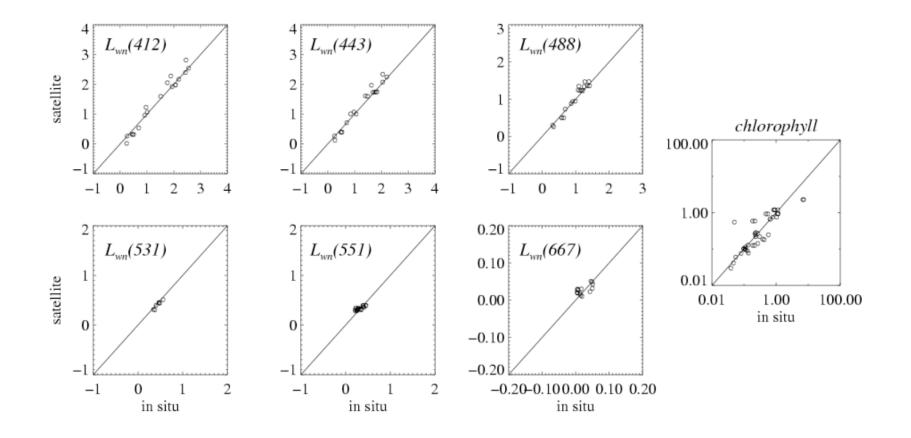

... what are the uncertainties associated with L_w^{target} ?

SeaWiFS Preliminary Vicarious Gains and Standard Deviations for Reprocessing 6 (Spring 2007)


	412	443	490	510	555	670	765	865
g	1.0324	1.0086	0.9887	0.9955	0.9967	0.9654	0.9645	1
S	0.010	0.009	0.007	0.007	0.008	0.005	0.004	0

SeaWiFS Vicarious Gains, as Above, with the BRDF Correction Disabled ($f_b = 1$)

	412	443	490	510	555	670	765	865
g	1.0251	1.0006	0.9803	0.9891	0.9925	0.9643	0.9645	1
s	0.007	0.008	0.007	0.007	0.007	0.005	0.004	
%	-1.05	-1.19	-1.08	-0.65	-0.14	0.17		


<u>SeaWiFS validation for the deep water subset</u>:

	412	443	488	531	551	667	678	748	870
g	0.9710	0.9848	0.9795	0.9870	0.9850	0.9797	0.9776	0.9855	1
s	0.006	0.005	0.005	0.005	0.005	0.003	0.004	0.004	0

MODIS-Aqua Vicarious Gains and Standard Deviations for Reprocessing 1.1 (August 2005)

MODIS-Aqua validation for the deep water subset:

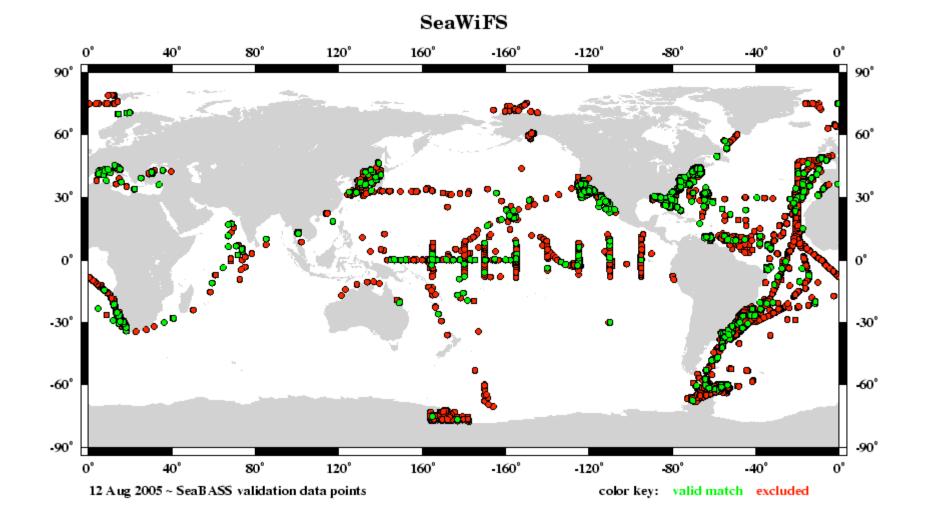
Vicarious Calibration, NASA OBPG, 1 Nov 2006

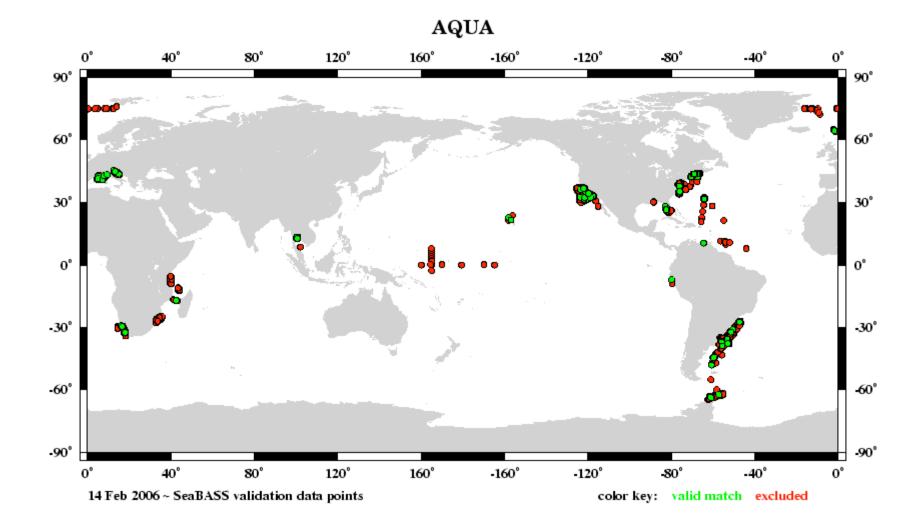
Backup slides ...

Vicarious Calibration, NASA OBPG, 1 Nov 2006

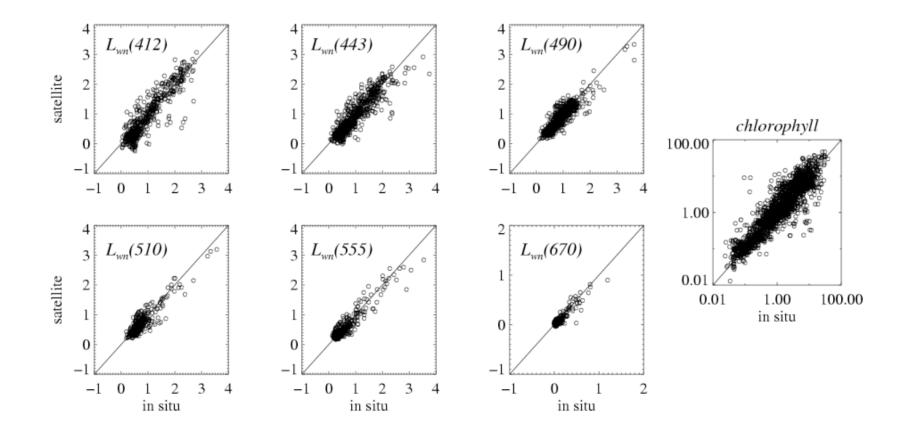
$$L_{t} = \left(L_{r} + L_{a} + t_{dv}L_{f} + t_{dv}L_{w}\right)t_{gv}t_{gs}f_{p}$$
(1)

$$L_{wn} = L_w \left(\mu_s t_{ds} f_s f_b f_\lambda \right)^{-1}$$
⁽²⁾

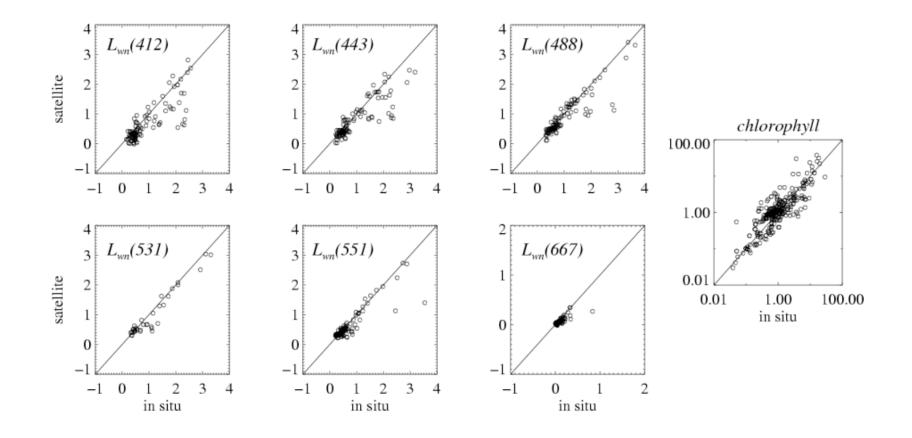

$$L_{wn}^{t} = L_{w}^{t} \left(\mu_{s}^{t} t_{ds}^{t} f_{s}^{t} f_{b}^{t} f_{\lambda}^{t} \right)^{-1}$$
(3)


$$L_{t}^{t} = \left\{ L_{r} + L_{a} + t_{dv}L_{f} + t_{dv}L_{wn}^{t} \left(\mu_{s}t_{ds}f_{s}f_{b}f_{\lambda} \right) \right\} t_{gv}t_{gs}f_{p}$$
(4)

$$g = L_t^t L_t^{-1} \tag{5}$$


$$L_t = \left(L_r + L_a + t_{dv}L_f\right)t_{gv}t_{gs}f_p \tag{6}$$

$$L_t^t = \left(L_r + L_a^t + t_{dv}L_f\right)t_{gv}t_{gs}f_p \tag{7}$$



SeaWiFS validation for the global data set:

MODIS-Aqua validation for the global data set:

Vicarious Calibration, NASA OBPG, 1 Nov 2006

SeaWiFS validation statistics:

Deep Water Only

Band	N	Median Ratio [*]	% Difference**	r ²	Bias	rms ⁺	In Situ Range	Satellite Range
lw412	154	1.030	10.783	0.904	0.049	0.232	0.200 - 2.789	-0.246 - 3.069
lw443	242	0.962	13.348	0.845	-0.036	0.232	0.185 - 2.815	0.046 - 2.582
lw490	242	0.956	12.134	0.744	-0.052	0.174	0.232 - 2.076	0.262 - 1.796
lw510	127	0.976	11.084	0.478	-0.011	0.103	0.315 - 0.965	0.333 - 1.042
lw555	242	0.976	16.637	0.676	-0.007	0.077	0.167 - 0.917	0.163 - 0.805
lw670	238	1.618	84.442	0.453	0.013	0.025	0.000 - 0.091	-0.031 - 0.116
chlorophyll	271	0.922	25.966	0.833	-0.083	0.443	0.024 - 3.721	0.030 - 8.882
kd490	149	0.993	13.543	0.897	0.002	0.013	0.014 - 0.278	0.017 - 0.258
aot865	65	1.413	43.136	0.678	0.037	0.064	0.018 - 0.358	0.026 - 0.424

* median of all satellite / in situ ratios

** median absolute percent difference

+ sqrt (\sum (satellite - in situ)^2 / n)

chlorophyll data were log transformed prior to calculation of slope, intercept, r2, rms and bias statistics median ratio and median absolute percent difference were performed on non-transformed data

MODIS-Aqua validation statistics:

Deep Water Only

Band	N	Median Ratio [*]	% Difference**	r ²	Bias	rms ⁺	In Situ Range	Satellite Range
lw412	13	1.023	5.618	0.966	0.045	0.178	0.240 - 2.586	0.017 - 2.812
lw443	17	0.998	10.858	0.929	-0.044	0.224	0.251 - 2.232	0.124 - 2.337
lw488	17	1.040	5.967	0.844	-0.035	0.180	0.307 - 1.415	0.260 - 1.474
lw531	5	0.930	6.961	0.882	-0.028	0.037	0.338 - 0.480	0.302 - 0.456
lw551	13	1.140	14.020	0.574	0.032	0.058	0.217 - 0.440	0.283 - 0.388
lw667	17	1.813	81.317	0.591	0.011	0.017	0.000 - 0.050	0.010 - 0.049
chlorophyll	28	0.956	28.282	0.740	-0.027	0.709	0.039 - 7.258	0.030 - 2.287
kd488	12	1.149	14.864	0.997	0.015	0.029	0.021 - 0.147	0.022 - 0.224
aot869	14	1.552	55.187	0.646	0.043	0.058	0.018 - 0.171	0.047 - 0.256

* median of all satellite / in situ ratios

** median absolute percent difference

+ sqrt (\sum (satellite - in situ)^2 / n)

chlorophyll data were log transformed prior to calculation of slope, intercept, r2, rms and bias statistics median ratio and median absolute percent difference were performed on non-transformed data

SeaWiFS validation statistics:

Global Results

Band	Ν	Median Ratio [*]	% Difference**	r ²	Bias	rms ⁺	In Situ Range	Satellite Range
lw412	480	0.905	24.098	0.827	-0.079	0.332	0.037 - 2.789	-0.246 - 3.069
lw443	629	0.915	17.480	0.830	-0.049	0.262	0.065 - 3.421	-0.010 - 3.019
lw490	587	0.918	15.101	0.821	-0.054	0.207	0.126 - 4.172	0.173 - 3.337
lw510	406	0.918	13.739	0.849	-0.042	0.177	0.195 - 4.174	0.214 - 3.295
lw555	629	0.915	16.878	0.931	-0.040	0.146	0.131 - 4.770	0.163 - 4.255
lw670	603	0.920	45.717	0.876	-0.007	0.045	0.000 - 1.181	-0.037 - 0.996
chlorophyll	1293	0.998	33.086	0.796	-0.006	0.657	0.024 - 32.181	0.030 - 33.621
kd490	247	1.038	15.043	0.743	-0.001	0.052	0.014 - 0.721	0.017 - 0.421
aot865	126	1.422	43.376	0.717	0.030	0.055	0.002 - 0.358	0.017 - 0.424

MODIS-Aqua validation statistics:

Global Results

Band	N	Median Ratio [*]	% Difference**	r ²	Bias	rms ⁺	In Situ Range	Satellite Range
lw412	120	0.747	30.898	0.742	-0.228	0.420	0.219 - 2.586	-0.014 - 2.812
lw443	133	0.862	18.811	0.815	-0.136	0.317	0.223 - 2.897	0.036 - 2.470
lw488	109	0.923	14.563	0.907	-0.094	0.222	0.307 - 3.540	0.113 - 3.410
lw531	32	0.933	11.178	0.934	-0.117	0.239	0.338 - 3.234	0.302 - 3.037
lw551	120	0.940	12.255	0.943	-0.074	0.164	0.217 - 3.186	0.224 - 3.045
lw667	107	0.682	36.392	0.735	-0.027	0.049	0.000 - 0.349	-0.018 - 0.345
chlorophyll	263	1.084	40.406	0.780	0.084	0.644	0.039 - 29.004	0.030 - 37.837
kd488	32	1.179	19.067	0.795	0.018	0.046	0.021 - 0.394	0.022 - 0.298
aot869	23	1.567	56.686	0.682	0.042	0.057	0.018 - 0.171	0.033 - 0.256