reo

De-striping of MODIS Optical Bands for Ice Sheet Mapping and Topography

Terry Haran and Ted Scambos, National Snow and Ice Datacenter, Cooperative Institute for Research in Environmental Sciences, University of Colorado
Mark Fahnestock, Complex Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire
tharan@nsidc.org

Motivation: MODIS is a substantial improvement over AVHRR

 bits (1 part in 4096 . . ased on the success with AVHRR-based Dhotocil
ice sheet surface siopes as low as 0.0002 vs. about 0.0007 for AVHRR.
Problem: MODIS artifacts (e.g. striping) limit its usefulness

Solution: Artifacts have periodicity which can aid in their removal

Step 1: Extract swath images
from HDF-EOS files

 This entire step is pertormed by the MoDIS Swath-to-Grid
Toolbox (MS2GT) availiable at: http://nsidc.org/data/modis/ms2gt/ The upper right image shows the entire 5416×2120 band 2
reflectance inmage at reduced resolutio. hhe red box indi-
cates the eosition
 Note the full 5416×22120 image is process
400×400 study area will be shown here.

 beased value of 838 , which correspon.
detector number of $388(838$ mod 40$)$.

Step 4: Normalize the mean of each
"double-scan" detector with to the mean of the entire image We now start attempting to correct the horizontal striping
artitact. From this point on, we will sonsider the swatt

 mean refle etance f
vector t such that:
We then store t back into the swath image, and we repeat

Step 5: Perform row regressions to
correct residual striping We now perform a final set of row regressions in order to
minimime the striping remaining after the previous step. This step consists of 6 passes. In each pass, 80 linear
regressions are pertormed, one for each double-scan
detector.
 scan detectors d and $d+1$. Then mean vector $m(d / 2)$ is
computed for each pair such that: $m(d / 2)=(v(d)+v(d+1)) / 2$

 ${ }^{\prime}(d+1)$ are then computed as follows:
$v^{\prime}(d)=(v(d)-i(d) / s(d) / 1) /(d+1)$
$v^{\prime}(d+1)=(v(d+1)-i(d+1) / s(d+1)$
 back into the swath image before the next pass is started
lip pass o, this porecuri is epeated for each of 40 pairs
of adjacent double-scan detectors.

 be seen in the im
sinusian thatiat
in the ice sherl.

