3D Aerosol-Clouds Radiative Interaction and the Role of Molecular Scattering
In Enhancing Clear Region Reflectance in Cumulus Cloud Fields

Guoyong Wen\textsuperscript{1,2}, Alexander Marshak\textsuperscript{1}, and Robert F. Cahalan\textsuperscript{1}
\textsuperscript{1}NASA/Goddard Space Flight Center, \textsuperscript{2}GEST/UMBC, \textsuperscript{3}SSAI

Executive Summary

We apply Monte Carlo method for radiative transfer to study cloud-induced enhancement in clear region of boundary layer cumulus cloud as observed by MODIS and ASTER in biomass burning regions in Brazil. 3D radiation fields are computed using MODIS and ASTER derived cloud optical depth. We found
1. Cloud illumination and shadowing effects near cloud edges are large and variable.
2. Cloud-induced enhancement become less variable about 2-3km away from cloud edges.
3. 3D cloud-induced enhancement depends on optical properties of nearby clouds as well as wavelength with associated biased error in 1D AOT retrieval ranges from +50% to +140%.
4. Detailed analyses show that radiative interaction between cloud and molecule above is the major mechanism for cloud-induced enhancement.

Figure 1. (Left) ASTER image centered at (0°N, 33.78°W) acquired on January 25, 2003; (Right) MODIS cloud optical depth fields for collocated ASTER images. The solar zenith angle is 32°.

Figure 2. MODIS AOT (\(\tau = 0.4\)) in thick clouds (\(\tau > 1\)) is considerably larger AOT (\(\tau = 0.3\)) in thin clouds (\(\tau < 1\)).

Figure 3. 3D cloud-induced enhancement for clear region in the cumulus above with detailed statistics for all non-cloudy pixels and MODIS selected pixels below.

Figure 4. The 3D cloud-induced enhancement in reflectance will lead to overestimates of AOT of \(\Delta \tau (0.47\mu m) \approx 0.12\) and \(\Delta \tau (0.66\mu m) \approx 0.043\) in thin clouds; and \(\Delta \tau (0.47\mu m) \approx 0.19\) and \(\Delta \tau (0.66\mu m) \approx 0.14\) if 3D cloud effects are ignored. For true \(\tau (0.47\mu m) = 0.2\) and \(\tau (0.66\mu m) = 0.1\), the 1D approximation systematically overestimate AOT by +50% to +140%.

Figure 5. The cumulative contribution to the enhancement in thick cumulus (a) for wavelength at 0.47\(\mu m\), and (b) for wavelength 0.66\(\mu m\).

Figure 6. The cumulative contribution to the enhancement in thin cumulus (a) for wavelength at 0.47\(\mu m\), and (b) for wavelength 0.66\(\mu m\).

Figure 7. The total reflectance enhancement (\(\Delta R = R_{3D} - R_{1D}\)) in thick cumulus as a function of aerosol optical thickness and surface albedo.