Sea Surface Temperatures from MODIS

P. J. Minnett, R. H. Evans, M. Szczodrak, M. Izaguirre & R. M. Reynolds*

Meteorology & Physical Oceanography
Rosenstiel School of Marine and Atmospheric Science
University of Miami

* Remote Measurements and Research Inc.
216 Euclid Avenue
Seattle

Introduction

Sea-surface temperature (SST) is an important geophysical variables derived from MODIS measurements. Accurate SSTs require:

- Good understanding of the behavior of the radiometer
- Good onboard calibration to give calibrated spectral radiances
- Accurate corrections for the effects of the intervening atmosphere
- Reliable techniques for identifying pixels contaminated by infrared emission from clouds and aerosols
- A reliable method of determining residual inaccuracies

The accuracies are determined by comparison with sub-surface temperature measurements from drifting and moored buoys, which provide a large number of “match-ups” that sample a wide range of climatological variability of the atmosphere, and ship-mounted infrared radiometers that provide high-accuracy measurements of the skin SST of the ocean. See figures below right.

For satellite-derived variables to be considered as part of the “Climate Record” they require traceability to National Standards. For MODIS SST this is provided by traceability of the RSMAS infrared calibration facility to NIST Standards.

Summary

- Most MODIS instrumental artifacts are corrected.
- Accuracy is established by comparison to buoy and M-AERI & ISAR measurements.
- M-AERI & ISAR are NIST traceable.
- MODIS SSTs are Climate Data Records.

SST Validation & NIST Traceability

The radiometric skin SSTs are provided by the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI; Minnett et al., 2001) and the Infrared Sea Surface Temperature Autonomous Radiometer (Donlon et al., 2008). The M-AERIs are usually mounted on research vessels and the ISARs on freighters and ferries.

NIST traceability is provided by the characterization of the RSMAS Water-Bath Black Body Calibration Target by the EOS TXR (Transfer Radiometer) that was part of an international workshop in 2001 (Rice et al., 2004).

Future directions

- Maintain and develop MODIS atmospheric correction algorithms, using comparisons with measurements from buoys, M-AERI and ISAR to ensure longer-term accuracy of the SST fields and monitor the time-dependent effects of instrumental artifacts.
- Improve atmospheric correction algorithm especially in regions of aerosols contamination and areas of enhanced uncertainties.
- Conduct follow-on Infrared Radiometry workshop, including NIST standards, to ensure continued traceability to National Standards.
- Develop Second-Generation M-AERI to ensure NIST-traceable ship-mounted radiometers to end of MODIS missions, and to extend SST CDRs into the NPOESS era.

References


m-aerimodeling@rsmas.miami.edu