

What's in a day?

Gregory Leptoukh, David Lary, Suhung Shen, Christopher Lynnes

Why Level 3 products?

- Level 2 data is difficult to work with because of:
 - Formats
 - Volume
 - Number of files
- Level 3 data are easy to use ... but might lead to wrong conclusions if not being careful
- Level 3 products are mostly used by modelers, application users, climate scientists

MODIS vs. MODIS

MODIS-Terra vs. MODIS-Aqua: Map of AOD temporal correlation, 2008

AOD MODIS Terra vs. Aqua in Pacific

Over the dateline

Away from the dateline

$$R^2 = 0.45$$

RMS = 0.05

$$R^2 = 0.72$$

RMS = 0.036

AOD Aqua MODIS vs MISR correlation map

AOD Aqua MODIS vs MISR correlation map for 2008

MODIS vs. MISR on Terra

MODIS-Terra vs. MISR-Terra: Map of AOD temporal correlation

MODIS Cloud Top Pressure

MODIS-Terra vs. MODIS-Aqua: Map of CTP temporal correlation, Jan 1-16, 2008

MODIS Terra & Aqua vs. AIRS Cloud Top Pressure

Correlation maps for Jan 1 – 16, 2008

NASA

Terra vs. Aqua MODIS AOD correlation: 16-day periods for 4 seasons

MODIS Atmos. Data day definition

Level 3 daily products are generated by binning Level 2 data belonging to one day onto a certain spatial grid according to a dataday definition.

The latter is different for different sensors and even for the same sensor but by different groups.

MODIS Atmospheric products (from MODIS L3 ATBD):

The Daily L3 product contains statistics computed from a set of L2 MODIS granules (HDF files) that span a 24-hour (00:00:00 to 23:59:59 UTC) interval. In the case where a L2 parameter is only computed during the daytime, then only daytime files are read to compute the L3 statistics.

2/2/10 Gregory Leptoukh 10

NASA

MODIS Aqua Level 3 coverage for diff. days in the 16-day cycle

Orbit Time Difference for Terra and Aqua 2009-01-06

Aqua

Aqua

Orbit track from: http://www.ssec.wisc.edu/datacenter

Max Time diff. for Terra (calendar day)

Artifact

Data day definitions

Level 3 daily products are generated by binning Level 2 data belonging to one day onto a certain spatial grid according to a dataday definition.

The latter is different for different sensors, and even for the same sensor but as selected by different Science Teams.

- 1. Calendar: all granules between 00:00 24:00 UTC: MODIS Atmospheric products, OMI L2G
- 2. Spatial (pixel-based): uses local date/time and ensures spatial continuity. TOMS, AVHRR, AIRS, OMI, MODIS Ocean, SeaWiFS

More flavors:

- 1. Calendar (EqCT): 24 hours centered at the Equatorial Crossing Time at 180 deg longitude, Intermediate case
- 2. Spatial (with $\Delta t = 1.6$ h to eliminate multiple overlaps at high lat.)
- 3. MISR: full 14 or 15 orbits depending on a day in the 16-day cycle

Spatial (local time) Data Day definition

- Each data set contains information for 24 hours of local time,
 e.g., 1:30 p.m.
- The gridding starts at the dateline and progresses westward, as does the satellite.
- Parts of scan lines that cross the dateline are included in the current date data set or the next, depending on which day is at the local time/day at that longitude.
- For Aqua, the p.m. orbit starts at roughly 1:30 Z on the day and ends on roughly 1:30 Z of the following day.

AIRS local time (from L. Iredell, GSFC)

AIRS UTC time (from L. Iredell)

Max time diff. between Terra and Aqua

Calendar UTC (MODIS) dataday

Spatial dataday

The artifact around the dateline disappears. In other areas, results are exactly the same for the (-7, 18) latitude belt.

At higher latitudes, the additional restriction for one orbit time around the local time produces different results for two dataday definitions.

2/2/10 Gregory Leptoukh 20

Removing the artifact in aerosol scattering angle correlation

Calendar dataday

Spatial dataday

Artifact: difference between calendar and spatial dataday defs.

Removing the artifact in 16-day AOD correlation

Spatial dataday

Artifact: difference between calendar and spatial dataday defs.

Caveats and Options

- Granule-based vs. L2 pixel-based:
 - Applying local-time approach to granules (not pixels) improves consistency between Terra and Aqua but
 - doesn't remove the artifact completely
- UTC begin and end time of a Level 3 day will be different for Terra and Aqua Level 3 products – it reflects the actual measurement local time
- Limiting orbit overlap to +- one around the local time:
 - where strong diurnal or other temporal changes occur, we know that all the observations averaged occurred with in a narrow and clearly defined local time window.

Conclusions and recommendations

- It's the sampling... and packaging of L2
- Ability to compare daily Level 3 products from different sensors depends on the dataday definition
- The calendar UTC 00-24 (MODIS) dataday definition leads to artifacts around the dateline due to Δt between measurements reaching up to 23 hours
- Spatial (local-time-pixel-based) dataday definition insures consistently small Δt between measurements from different satellites, thus removing artifacts

BACKUPS

2/2/10 Gregory Leptoukh 25

A TOMS L3 day: the ensemble of all L2 ground pixels with pixel centers that have the same local calendar date on the ground.

Pixels to the east of the 180° meridian get assigned to data-day N, whereas the pixels to the west of the meridian correspond to data-day N+1.

Max time diff. Terra: day starts at 10:30 pm

Max time diff. Aqua: day starts at 1:30 am

Max Local time diff. for spatial DD def. with additional orbit filtering

MISR data day: a day in a 16-day cycle

Full orbits: either 14 or 15 in a dataday