

MODIS Calibration Workshop

Jack Xiong

Biospheric Sciences Branch 614.4, NASA/GSFC

and

MODIS Characterization Support Team (MCST)

MODIS Calibration Workshop, Lanham, MD 20706 (January 25, 2010)

SSAI 5th Floor Layout

- Badge (sign-in at front desk)
- Restroom (keys available at front desk)
- Breaks (lunch and coffee)
- Copy and Fax (available upon request)
- Dial in # for both MODIS and VIIRS Workshops

1-866-600-2258; PC: 444018

• Wireless Guest Network

SSID:

WPA Key:

- **Guest Network Login Page:**
 - User ID:
 - Password:

MCST Contacts

- Instrument Operation: Jennifer Dodd / Gavin Westenburger
- L1B and LUT: James Kuyper
- RSB Calibration: Junqiang Sun / Hongda Chen
- TEB Calibration: Tiejun Chang / Aisheng Wu
- Spectral and Spatial: Jason Choi
- General Information: Brian Wenny / Jack Xiong

New Website: http://mcst.gsfc.nasa.gov/ (online but undergoing development)

- Information on MODIS Instrument Status, Calibration, and L1B Code & LUTs
- L1B ATBD, MCST Publications, and Workshop Presentations

Contact Brian Wenny or other MCST members for specific requests

Acknowledgements

- MCST Groups: IOT, L1B/LUT, and Calibration
- MODIS Science Team
 - Science Team Leader (Vince Salomonson and Michael King)
 - Land (Eric Vermote and Zhengming Wan)
 - Ocean (Gerhard Meister et al.)
 - Atmosphere (Chris Moeller et al.)
 - Cal/Val (Stu Biggar et al.)
- Raytheon MODIS Team
 - Raytheon SAS (Space and Airborne Systems) at El Segundo
- Others
 - Bill Barnes, Bruce Guenther, Eugene Waluschka, and Robert Wolfe

Special Thanks to Sigma Space Co (SSC) and Science Systems and Applications, Inc. (SSAI)

•	Instrument Operation, Calibration, and Performance	
•	Introduction (Jack Xiong)	9:00 am
•	Instrument Operation Status (Jennifer Dodd)	9:15 am
•	Status of L1B Algorithm and LUT Updates (James Kuyper)	9:25 am
•	RSB Calibration and Performance (Junqiang Sun)	9:35 am
•	TEB Calibration and Performance (Tiejun Chang)	10:05 am
•	Spatial and Spectral Performance (Jason Choi)	10:30 am
•	Coffee Break	10:40 am
•	Collection 6 Issues (Brian Wenny)	10:55 am
•	Geo-location Characterization and Performance (Robert Wolfe)	11:20 am
•	Science Discipline Presentations	
•	Ocean Presentation (Gerhard Meister/Gene Eplee)	11:35 am
•	Land Presentation (Eric Vermote)	11:55 am
•	Atmosphere Presentation (Chris Moeller/Steve Platnick)	12:10 pm
•	Adjourn	12:30 pm

Introduction

- Instrument and Calibration Background
 - On-orbit Calibration Activities
 - Calibration Methodologies
- Key Instrument Telemetry Trending
 - Instrument temperature
 - FPA temperature
 - Blackbody
- Summary of Instrument Performance

• MODIS

- On both Terra and Aqua
- 36 spectral bands (0.41-14.4µm)
- 4 focal plane assemblies (FPA)
- 3 spatial resolutions (Q/H/1km)

- MODIS On-orbit Calibration
 - Radiometric, spatial, and spectral
 - On-board calibrators and the Moon
- Data and Applications
 - 40 science data products

Launch: 12/18/99 1st Light: 02/24/00

International Earth Observing Constellations Complementary Morning and Afternoon Observations

Launch: 05/04/02 1st Light: 06/24/02 Page 8

On-orbit Calibration Activities

RSB Radiometric Calibration

EV Reflectance

$$\rho_{EV} \cdot \cos(\theta_{EV}) = m_1 \cdot dn_{EV}^* \cdot d_{Earth-Sun}^2$$

TEB Radiometric Calibration

EV Radiance:

$$L_{EV} = \frac{I}{RVS_{EV}} \left(a_0 + b_1 \cdot dn_{EV} + a_2 \cdot dn_{EV}^2 - \left(RVS_{SV} - RVS_{EV} \right) \cdot L_{SM} \right)$$

Calibration Coefficients:

$$b_{I} = \left(RVS_{BB} \cdot \varepsilon_{BB} \cdot L_{BB} + \left(RVS_{SV} - RVS_{BB}\right) \cdot L_{SM} + RVS_{BB} \cdot \left(1 - \varepsilon_{BB}\right) \cdot \varepsilon_{cav} \cdot L_{cav} - a_{0} - a_{2} \cdot dn_{BB}^{2}\right) / dn_{BB}$$

RVS: Response Versus Scan-angleε: EmissivityL: Spectral band averaged radiancedn: Digital count with background correctedRSR: Relative Spectral Response

WUCD: Warm-up and Cool-down

Spatial and Spectral Characterization

Instrument Operations

- Terra MODIS Configurations
 - A-side: launch to Oct 30, 2000
 - B-side: Oct 30, 2000 to June 15, 2001
 - A-side: July 02, 2001 to Sept 17, 2002
 - A-side electronics and B-side formatter: Sept 17, 2002 to present
 - SD door fixed at open position: July 02, 2003 to present
 - BB temperatures set at 290K
 - Cold FPA controlled at 83K
- Aqua MODIS Configurations
 - Same B-side configuration since launch
 - BB temperatures set at 285K
 - Cold FPA controlled at 83K

Instrument and FPA Temperatures (Terra MODIS)

Instrument and FPA Temperatures (Aqua MODIS)

EOS

BB Temperatures

Excellent BB temperature stability: short- and long-term

Instrument Performance Summary (I)

- Both instruments continue to operate normally
 - Over 10 years for Terra MODIS and 7.5 years for Aqua MODIS
- On-board calibrators continue to provide their designed functions
 - Terra MODIS SD door fixed at the "open" position (July 2, 2003) => increased SD degradation rates
 - SRCA 30W configuration replaced by the 20W configuration (2005 for Aqua MODIS, 2006 for Terra MODIS)
 - BB temperatures remain extremely stable
- Instrument and FPA temperatures are stable
 - Instrument and warm FPA temperatures changed less than 3K for Terra MODIS over 10 years; less than 2K for Aqua MODIS over 7.5 years
 - Terra MODIS Cold FPA temperature stably controlled at 83K; Aqua MODIS cooler margin slowly decreased => small orbit-to-orbit and seasonal variations of its CFPA temperatures (up to 0.15K)

Instrument Performance Summary (II)

- Radiometric (36 spectral bands: 490 individual detectors)
 - 45 noisy detectors (30 from pre-launch; 35 at launch) and no inoperable detectors for Terra MODIS (most on-orbit noisy detectors are in the LWIR PV bands)
 - 6 noisy detectors (2 from pre-launch; 3 at launch) and 15 inoperable detectors (10 from pre-launch and 15 shortly after launch) for Aqua MODIS (mostly in band 6)
 - Large changes in VIS spectral band response (mirror-side dependent)
- Spectral (VIS/NIR bands only)
 - Changes in center wavelengths and bandwidths are less than 0.5nm for most spectral bands (with a few exceptions)
- Spatial (all bands)
 - On-orbit band-to-band registrations (BBR) have been stable; nearly all band pairs _ meet design requirements for Terra MODIS; large BBR offsets in Aqua MODIS for band pairs with one from cold FPA and another from the warm FPA (a known problem since pre-launch)
- Concerns and Challenges
 - Large optics (mirror and SD) degradation at short wavelengths; changes in RVS and ____ polarization parameters for VIS spectral bands (8, 9, 10)

MODIS Focal Plane Assemblies (FPA)

Instrument FPA Main Frame Temperature

Cold FPAs: (80. 83, 85k)

S: scan direction; T: track direction B13 and B14 have 2 columns of detectors for TDI high and low gain output

MODIS Specifications and Applications

Primary Use	Band	Bandwidth (nm)	Spectral Radiance ¹	Required SNR	Primary Use	Band	Bandwidth (mm)	Spectral Radiance ¹	Required NEDT(K)
Land/Cloud/Aerosols	1	620 - 670	21.8	128		20	3.660 - 3.840	0.45 (300K)	0.05
Boundaries	2	841 - 876	24.7	201	Surface/Cloud	21	3.929 - 3.989	2.38 (335K)	0.2
	3	459 - 479	35.3	243	Temperature	22	3.929 - 3.989	0.67 (300K)	0.07
	4	545 - 565	29	228		23	4.020 - 4.080	0.79 (300K)	0.07
Land/Cloud/Aerosols Properties	5	1230 - 1250	5.4	74	Atmospheric	24	4.433 - 4.498	0.17 (250K)	0.25
	6	1628 - 1652	7.3	275	Temperature	25	4.482 - 4.549	0.59 (275K)	0.25
	7	2105 - 2155	1	110		26	1.360 - 1.390	6	150 (SNR)
	8	405 - 420	44.9	880	Cirrus Clouds Water Vapor	27	6.535 - 6.895	1.16 (240K)	0.25
	9	438 - 448	41.9	838		28	7.175 - 7.475	2.18 (250K)	0.25
	10	483 - 493	32.1	802	Cloud Properties	29	8.400 - 8.700	9.58 (300K)	0.05
Ocean Color/	11	526 - 536	27.9	754	Ozone Surface/Cloud Temperature	30	9.580 - 9.880	3.69 (250K)	0.25
Phytoplankton/	12	546 - 556	21	750		31	10.780 - 11.280	9.55 (300K)	0.05
Biogeochemistry	13	662 - 672	9.5	910		32	11.770 - 12.270	8.94 (300K)	0.05
	14	673 - 683	8.7	1087		33	13.185 - 13.485	4.52 (260K)	0.25
	15	743 - 753	10.2	586	Cloud Top Altitude	34	13.485 - 13.785	3.76 (250K)	0.25
	16	862 - 877	6.2	516		35	13.785 - 14.085	3.11 (240K)	0.25
	17	890 - 920	10	167]	36	14.085 - 14.385	2.08 (220K)	0.35
Atmospheric Water Vapor	18	931 - 941	3.6	57	¹ Spect	ral Rad	iance values are (W/m²-µm-sr)	
	19	915 - 965	15	250					

- 20 reflective solar bands (RSB: bands 1-19, and 26) from 0.41 - 2.2μm

– 16 thermal emissive bands (TEB: bands 20-25, 27-36) from 3.5 - 14.4μm

MODIS and VIIRS Spectral Bands

VIIRS Band	Spectral Range (um)	Nadir HSR (m)	MODIS Band(s)	Range	I I HSR
DNB	0.500 - 0.900	l			
О м1	0.402 - 0.422	750	8	0.405 - 0.420	1000
O M2	0.436 - 0.454	750	9	0.438 - 0.448	1000
O M2	0 479 0 409	750	2 10	0.459 - 0.479	500
	0.478 - 0.498	730	5 10	0.483 - 0.493	1000
Ома	0 545 - 0 565	750	4 or 12	0.545 - 0.565	500
~ IVI4	0.545 - 0.505	150	40112	0.546 - 0.556	1000
l1	0.600 - 0.680	375	1	0.620 - 0.670	250
О м5	0 662 - 0 682	750	13 or 14	0.662 - 0.672	1000
	0.002 - 0.002	750	13 01 14	0.673 - 0.683	1000
M6	0.739 - 0.754	750	15	0.743 - 0.753	1000
12	0.846 - 0.885	375	2	0.841 - 0.876	250
0			16 or 2	0.862 - 0.877	1000
<u>М</u> 7	0.846 - 0.885	750	10 01 2	0.841 - 0.876	250
M8	1.230 - 1.250	750	5	SAME	500
M9	1.371 - 1.386	750	26	1.360 - 1.390	1000
13	1.580 - 1.640	375	6	1.628 - 1.652	500
M10	1.580 - 1.640	750	6	1.628 - 1.652	500
M11	2.225 - 2.275	750	7	2.105 - 2.155	500
I 4	3.550 - 3.930	375	20	3.660 - 3.840	1000
M12	3.660 - 3.840	750	20	SAME	1000
0				3.929 - 3.989	1000
○ M13	3.973 - 4.128 I	750 I	21 or 22	3.929 - 3.989	1000
M14	8.400 - 8.700	750	29	SAME	1000
M15	10.263 - 11.263	750	31	10.780 - 11.280	1000
15	10.500 - 12.400	375	31 or 32	10.780 - 11.280 11.770 - 12.270	1000 1000
M16	11.538 - 12.488	750	32	11.770 - 12.270	1000

• Dual gain band

MODIS Instrument Operations

MODIS IOT

1/25/10

MODIS Operational Activities

Operational Activity	Activity	Operational Activity	Activity
OA-01	Initial Checkout	OA-16	SD/SD SM Screened
OA-02	Mode Transition	OA-17	SD Sector Shift
OA-03	Formatter Day Mode	OA-18	SD SM
OA-04	Form atter Night Mode	OA-19	SRCA Full Radiom etric
OA-05	OA-05 Safe/Survival Mode Recovery		SRCA 10W Radiometric Continuous
OA-06	OA-06 Initial Outgas		SRCA 1W Radiometric Continuous
OA-07	DC Restore On/Off	OA-22	SRCA Full Spectral
OA-08	OA-08 S/C Maneuver (Lunar Cal)		SRCA Full Spatial
OA-09	S/C Maneuver (SD Scattered Light)	OA-24	SRCA Along-Scan Spatial
OA-10	S/C Maneuver (RVS)	OA-25	SRCA 1W Along-Scan Spatial
OA-11 Constraints on Special Operat (Field Campaign)		OA-26	Blackbody Cycle
OA-12 Table Load (GAO)		OA-27	PV Electronic Calibration
OA-13	OA-13 Deleted		PC Electronic Calibration
OA-14	Sector Rotation	OA-29	End Of Mission
OA-15	SD/SD SM Open		

Recent Events (Terra)

- Spacecraft Events
 - SFE-A (2008-252,355-358,2009-116,238,250,252,355)
 - Battery Anomaly (2009/286) possible MMOD (Micro-Meteoroid Orbital Debris)
 - SSR PWA (2010/008) affecting 2 ASTER supersets, no MODIS impact other than ~10 min data loss during recovery
- Orbit Adjust Maneuvers
 - Drag Make-Up #52-54
 - Inclination Adjustment #21-24
- MODIS Events
 - A few telemetry points slightly exceeded configuration monitor limits, no impact on MODIS operations or calibration

- Spacecraft Events
 - Partition 6 fix in Jan 2009 to correct offset implemented in Dec 07 as a workaround for the pointer anomaly
- Orbit Adjust Maneuvers
 - Drag Make-Up #33-38
 - Inclination Adjustments #16-24
 - Debris Avoidance Maneuver (2009/329)
- MODIS Events
 - No new events

Terra MODIS OBC Operations

Activity	PL to 05/08	05/08 - present	Total
SD/SDSM	562	35	597
BB WUCD	63	7	70
SRCA*	265	34	299
Electronic Cal	55	8	63
Lunar Roll	78	17	95

* Includes Spatial, Spectral and Radiometric 05/08 = last Science Team Meeting

Aqua MODIS OBC Operations

Activity	PL to 05/08	05/08 - present	Total
SD/SDSM	364	44	408
BB WUCD	23	8	31
SRCA*	139	35	174
Electronic Cal	35	8	43
Lunar Roll	53	16	69

* Includes Spatial, Spectral and Radiometric 05/08 = last Science Team Meeting

SRCA Calibrations

- Terra 299 SRCA Calibrations
- Aqua 174 SRCA Calibrations

Lamp	Power		10	1W			
Lamp #		1	2	3	4	1	2
	Usage (hr)	288.6	172.1	190.3	96.7	576.4	282.0
Terra	Life (hr)	500	500	500	500	4000	4000
	percent	57.7 %	Failed on 11-20-2004	Failed on 2-18-2006	19.3%	14.4%	7.1%
	Usage (hr)	281.3	188.0	205.7	99.6	517.1	274.9
Aqua	Life (hr)	500	500	500	500	5000	5000
	percent	56.3%	Failed on 4-14-2003	Failed on 6-28-2005	19.9%	10.3%	5.5%

- Aqua MODIS CFPA temperature control
 - Currently set at 83K two options for mitigation
 - Change set point to 85K
 - Perform outgas (given the opportunity)
- Aqua SD/SDSM door movements
 - Adjust calibration frequency to preserve door movements

	PL to 05/08	05/08 to present	Total	Design Lifetime	% Used
Terra*	2146	0	2146	3022	71
Aqua ⁺	2716	130	2849	3022	94

* As of 07/02/2003, SD Door in fixed 'open' position with screen in place

⁺ At current usage rate Aqua will reach designed lifetime of door movement in August 2012

MODIS Level 1B and LUT Status

(Details provided in backup slides)

Recent Code and L1B Updates

- L1B code has been relatively stable
 - 9 minor code changes made in collection 5 since 2005 (5 for Terra MODIS and 4 for Aqua MODIS)
- Near-monthly LUT update for each MODIS forward processing
 - 72 for Terra MODIS and 43 for Aqua MODIS in collection 5 since 2005
 - Additional LUTs generated, tested, and delivered to OBPG (Ocean Biology Processing Group) for special investigations
 - Most LUT updates were driven by response changes of VIS bands

(as of 01/12/2010)

Since 2005, L1B code has been relatively stable:

Year	Terra Code Versions	Terra LUTs C2	Terra LUTs C3	Terra LUTs C4	Terra LUTs C5	Aqua Code Versions	Aqua LUTs C3	Aqua LUTs C4	Aqua LUTs C5	Total
2000	5	2	0	0	0	0	0	0	0	7
2001	2	1	5	0	0	0	0	0	0	8
2002	3	0	1	0	0	2	3	1	0	10
2003	3	0	0	19	0	3	0	17	0	42
2004	1	0	0	17	0	1	0	11	0	30
2005	2	0	0	18	10	2	0	11	6	49
2006	0	0	0	20	14	0	0	12	9	55
2007	1	0	0	1	13	0	0	0	11	26
2008	1	0	0	0	16	1	0	0	8	26
2009	2	0	0	0	18	1	0	0	8	29
2010	0	0	0	0	1	0	0	0	1	2
Total	20	3	6	75	72	10	3	52	43	284

Does not include internal deliveries(18), nor special deliveries to Ocean Color Group (31) or Miami & Wisconsin (7)

MODIS MOD_PR02 L1B Code/LUTs Major Production Changes Timeline

Terra Forward Processing

Production Changes to Collection 5 MOD_PR02 TERRA L1B Code

PGE02 Version	Forward Processing Begin	Code Changes
V5.0.6_Terra	03/07/2005 (066 2005) 23:55	 Add a new LUT to enable the SWIR OOB correction detector dependency Enable Band 21 calibration with mirror side dependency Improve the code portability Comply with the ESDIS guideline Add HDFEOS_FractionalOffset Minor fix for code version recording Correct wrong dimension mapping offset setting for 250m band data
V5.0.38_Terra	9/17/2007 (260 2007) 19:35	• Relax the RVS correction limit range from [0.8, 1.2] to [0.4, 2.4].
V5.0.40_Terra	1/24/2008 (024 2008) 00:00	 Changed to set the PGEVersion ECS inventory metadata based upon the MODAPS PGE Version, rather then the obsolete GDAAC PGE Version. Removed the ScanType of "Mixed" from the code. Changed for ANSI-C compliance and comments correction.
V5.0.42_Terra	7/10/2009 (191 2009) 00:00	 Added an extension ".NRT" to the LOCALGRANULEID metadata if the ReprocessingActual from pcf is "Near Real Time" to indentify the NRT production.
V5.0.44_Terra	8/23/2009 (235 2009) 00:00	 Only the PGE02 version is changed for correction to a PGE level error.

Production Changes to Collection 5 MOD_PR02 AQUA L1B Code

PGE02 Version	Forward Processing Begin	Code Changes
V5.0.7_Aqua	07/03/2005 (185 2005) 00:10	 Add a new LUT to enable the SWIR OOB correction detector dependency Enable Band 21 calibration with mirror side dependency Improve the code portability Comply with the ESDIS guideline Add HDFEOS_FractionalOffset Minor fix for code version recording Correct wrong dimension mapping offset setting for 250m band data
V5.0.35_Aqua	01/23/2008 (023 2008) 00:00	 Relax the RVS correction limit range from [0.8, 1.2] to [0.4, 2.4] Changed to set the PGEVersion ECS inventory metadata based upon the MODAPS PGE Version, rather then the obsolete GDAAC PGE Version. Removed the ScanType "Mixed" from the code because the L1A "Scan Type" is never "Mixed". Changed for ANSI-C compliance and comments correction.
V5.0.37_Aqua	07/10/2009 (191 2009) 00:00	 Added an extension ".NRT" to the LOCALGRANULEID metadata if the ReprocessingActual from pcf is "Near Real Time" to indentify the NRT production.

Collection 6 Code Changes for L1B

- Change to no longer interpolate the values of inoperable detectors from nearby good detectors.
 - The scaled integer value will be set to 65531
- Noisy/inoperable detector (sub-sample) flagging
 - If sub-sample is inoperable, the scaled integer value will be set to 65525
- The sector rotation anomaly fix
 - The anomaly is caused by the mismatch of the timing of the instrument command to perform the sector rotation and the recording of the telemetry point that reports the angle of sector rotation.
 - Will be implemented in C5 PGE02 by end of February, 2010.
- Change in how ReprocessingActual ECS metadata is set and used.
 - Previously, value was fixed as "processed once"
 - Now the value is controlled by MODAPS operations:
 - "Near Real Time" causes file name to end with ".NRT.hdf"
 - "processed once"
 - "reprocessed once"
 - Also implemented in Collection 5 code.

MODIS Reflective Solar Bands On-Orbit Performance

RSB Group MODIS Characterization Support Team (MCST)

MODIS Science Team Meeting (January 25, 2010)

- Introduction
- RSB calibration algorithms
- Noisy & inoperable RSB detectors
- Solar Diffuser degradation
- RSB responses trending
- Detector-dependent RVS and EV striping reduction
- Alternative collection 6 LUTs
- Summary of RSB overall performance

Introduction

SD degradation at wavelength 940 nm measured by SDSM D9 is included in Collection 6 through the entire mission and also included in Collection 5 for Terra after Jan. 1, 2009 and Aqua after March 1, 2009.

RSB lunar calibration

MODIS Lunar coefficients Moon Solar Diffuser BlackBody Bands 1-4, 8-12 and 17-19 $m_1^{moon} = \frac{f_{vg}}{\langle dn_{Moon}^* \rangle}$ pace View Port Bands 13-16 (Saturated) Fold Mirror $m_1^{moon} = m_{1,B18}^{moon} \cdot \frac{\langle dn_{Moon,B18}^* \rangle}{\langle dn_{Moon}^* \rangle}$ MADTR **MODIS Response** 300 View geometry correction $f_{vg} = \frac{f_{phase-angle} \cdot f_{libration}}{d_{Sun-Moon}^2 \cdot d_{Moon-MODIS}^2}$ Jekechol A RYOME

MODIS RSB Earth View Radiance

EV Radiance:

$$L_{EV} = \frac{E_{Sun} \cdot \rho_{EV} \cdot \cos(\theta_{EV})}{\pi \cdot d_{Earth_Sun}^2}$$

$$=\frac{E_{Sun}}{\pi}\cdot m_{1}\cdot dn_{EV}^{*}$$

where

$$dn_{EV}^* = dn_{EV} \cdot (1 + k_{Inst} \cdot \Delta T_{Inst}) / RVS_{EV}$$

Solar Irradiance E_{SUN}: 0.4-0.8 μm Thuillier et al., 1998; 0.8-1.1 μm Neckel and Labs, 1984; Above 1.1 μm Smith and Gottlieb, 1974

MODIS RSB Noisy & Inoperable Detectors

Terra

-																	
	Band		5									6			7		
Day/Year	SNR Spec		74									275			110		
	Detector	2	4	6	11	13	16	17	18	19	20	3	7	8	1-10	11-13,15-20	14
055/2000	Nadir Dorr Open	0	0	60	80	0	30	0	0	80	0	0	0	100	100	110	0
160/2000	CFPA Lost Control	95	95	60	80	80	30	80	80	80	80	0	0	100	100	110	0
232/2000	Back from FPA recyle	75	95	50	0	80	50	80	0	70	0	0	0	100	100	110	0
304/2000	B Side	85	20	85	80	80	60	80	80	80	80	350	350	275	90	100	100
183/2001	A Side	95	10	90	90	90	90	90	90	90	90	380	380	380	100	110	110
259/2002	A Side B Formatter	100	10	100	100	100	100	100	100	100	100	380	380	380	100	110	110

Aqua

	Band	5						6				
Day/Year	SNR Spec	74					2	75				
	Detector	20	2	4	5	6	7	9	10	12-16	17	18-20
175/2002	Nadir Dorr Open	0	0	0	0	0	470	470	0	0	100	0
189/2002	Back from Safe Mode	0	0	470	470	0	470	470	0	0	470	0
255/2002	Back from Safe Mode	0	0	0	0	0	470	470	0	0	470	0
266/2002	Back from Safe Mode	0	0	0	0	0	150	400	0	0	470	0
110/2003		0	0	0	0	0	260	470	0	0	320	0
160/2003		0	0	0	0	0	290	400	0	0	470	0
265/2003		0	0	150	0	0	290	400	0	0	275	0
360/2003		0	0	200	0	0	290	275	0	0	270	0
080/2006		0	0	200	0	0	0	350	0	0	270	0
314/2006		0	0	200	0	0	472	350	0	0	270	0
			In Spec			Near Spe	С		Out Spec	Inoperable		

Detectors in Production order

MODIS SD Degradation Trending

Results are derived from normalization approach (to D9). Additional D9 corrections are applied to Collection 6 through the entire mission and to Collection 5 after Jan. 1, 2009 for Terra and after March 1, 2009 for Aqua, respectively.

Detector Averaged

Large mirror side differences are observed in short wavelength bands

Detector Averaged

Mirror side differences are small in Terra NIR and SWIR bands

Detector Averaged

Much smaller mirror side differences in Aqua MODIS

Detector Averaged

Detector Averaged

Detector Averaged

MODIS RSB RVS Trending

Detector Averaged

years

MODIS RSB RVS Trending

Detector Averaged

EOS

launch

Terra MODIS Band 8 RVS Trending

The RVS detector difference can be as large as 2.5% for Terra band 8.

Terra MODIS Band 8 EV Radiance Detector Difference Trending

In Collection 6, the striping at the AOI of the SD is reduced. This reduction is due to the application of the detector bias correction in SD m1, which is derived from EV radiance.

Terra MODIS Band 8 EV Radiance Detector Difference Trending

The striping at the AOI of the SV is significantly reduced in Collection 6. This reduction is due to the application of the detector dependent RVS.

Current Versions of RSB LUTs

□ Collection 5 (V5)

- SD BRF degradation at wavelength 940 nm is assumed to be very small and is not included in RSB calibration before 2009 for Terra and April 1, 2009 for Aqua. The degradation at the wavelength is included after the aforementioned times for both instruments.
- RSB calibration coefficients, m1, are derived from SD/SDSM calibration for both instruments
- Detector-averaged time-dependent RVS is applied to bands 1-4, 8-12, and 17-19 for both instruments
- V5 LUTs are currently in operation for both instruments

□ Collection 6 (V6)

- SD BRF degradation at wavelength 940 nm is included for the entire mission for both instruments, which results in an accumulated 1.3% and 0.3% correction for Terra and Aqua Vis/Nir bands, respectively.
- Delta m1 derived from EV radiance is applied to bands 8-12 to correct the detector bias in the m1 derived from SD/SDSM calibration for both instruments
- Time-dependent RVS is applied to all RSB (including bands 13-16) except SWIR bands for both instruments
- V6 LUTs are currently being tested by science teams.

Current Versions of RSB LUTs

Alternative V6 LUTs

- Detector differences in both m1 and RVS are identical to the V6 LUTs
- The lunar m1 is used to track the gain change at the AOI of the SV
- The EV dn trendings at 8 selected AOIs are used to track the detector averaged m1 and RVS change since on-orbit or a chosen time
- A quadratic form is used to describe the RVS on-orbit change for MS1 as well as MS2
- Alternative V6 LUTs are currently being tested by Ocean group

Aqua band 8 EV dn trending

Comparison between V6 and Alternative V6 LUTs

□ Terra MODIS (10 years)

- SD/SDSM and the Moon observations track the RSB gain change effectively.
- More than 50% and 46% changes in mirror side 1 and 2, respectively, are observed for MODIS band 8 responses at the SD AOI.
- The band 8 RVS at the SV AOI has changed about 24% in the last few years.
- The delta m1 correction and detector-dependent RVS significantly reduce EV striping.

□ Aqua MODIS (7.5 years)

- SD/SDSM and the Moon observations track the RSB gain change effectively.
- Maximum response change for band 8 is around 30%, and less than 8% for NIR & SWIR bands.
- Mirror side differences are small and less than 3% for all RSB bands.
- The band 8 RVS at SV AOI has decreased 18% since launch.

MODIS Thermal Emissive Bands On-Orbit Performance

TEB Group MODIS Characterization Support Team (MCST)

MODIS Science Team Meeting (January 25, 2010)

MODIS TEB Calibration Performance

- MODIS TEB Calibration Algorithm
- Terra and Aqua MODIS TEB On-orbit Performance
 - Black Body Stability
 - Detector Response & Noise Performance
 - Noisy Detector History
 - Aqua CFPA Temperature Concern

MODIS TEB

Thermal Emissive Bands

- 16 spectral bands
- 160 detectors, 10 per band
- 2 CFPAs (SMIR, LWIR; 83K)

PV HgCdTe

PV HgCdTe

PC HgCdTe

TEB Calibration Algorithm

EV Radiance (top-of-atmosphere), L_{EV}

$$L_{EV} = \frac{1}{RVS_{EV}} \left(a_0 + b_1 \cdot dn_{EV} + a_2 \cdot dn_{EV}^2 - \left(RVS_{SV} - RVS_{EV} \right) \cdot L_{SM} \right)$$

b1 is calibrated from On-board calibration radiance

$$L_{CAL} = RVS_{BB}\varepsilon_{BB}L_{BB} + (RVS_{SV} - RVS_{BB})L_{SM} + RVS_{BB}(1 - \varepsilon_{BB})\varepsilon_{cav}L_{cav}$$

$$b_1 = (L_{CAL} - a_0 - a_2 dn_{BB}^2) / dn_{BB}$$

- using quadratic algorithm
- for each band, detector, and mirror side
- performed on scan-by-scan basis
- ➢ Warm-up and cool-down (WUCD)
 - BB temperature varies ~270 to 315K
 - performed quarterly
 - a 0/a 2 characterization and Band 21 b1 calibration
 - NEdT @ typical temperature

EV: Earth View SV: Space View BB: Blackbody SM: Scan Mirror Cav: Instrument Cavity

RVS: Response Versus Scan-angle

- ε: Emissivity
- L: Spectral band averaged radiance

 $(\operatorname{in} W/m^2 - \mu m - sr)$

- dn: Digital count with background correction
- a_0 : Detector response offset
- b_1 : Detector response linear coefficient
- a_2 : Detector response nonlinear coefficient

- MODIS TEB Calibration Algorithm
- Terra and Aqua MODIS TEB On-orbit Performance
 - Black Body Stability
 - Detector Response & Noise Performance
 - Noisy Detector History
 - Aqua CFPA Temperature Concern

12 thermistors are evenly embedded in BB panel and the temperature is measured scan-by-scan

Terra BB Short-term Stability

Temperatures from 12 individual BB thermistors (1 granule, scan-by-scan)

Standard deviation of temperature measured using individual thermistor (203 scans in one granule, in K)

The rmistor #	1	2	3	4	5	6	7	8	9	10	11	12
2003	0.029	0.031	0.025	0.024	0.034	0.024	0.029	0.031	0.027	0.037	0.022	0.030
2009	0.015	0.032	0.029	0.024	0.020	0.022	0.023	0.045	0.018	0.017	0.016	0.027

Page 66

Terra BB On-Orbit & Lifetime Performance

Page 67

Aqua BB Short-term Stability

Temperatures from 12 individual BB thermistors (1 granule, scan-by-scan)

2002

2009

Standard deviation of temperature measured using individual thermistor (203 scans in one granule, in K)

The rmis tor #	1	2	3	4	5	6	7	8	9	10	11	12
2002	0.007	0.008	0.008	0.010	0.009	0.009	0.009	0.012	0.010	0.011	0.012	0.010
2009	0.009	0.010	0.010	0.009	0.010	0.008	0.008	0.010	0.009	0.010	0.012	0.009

Aqua BB On-Orbit and Lifetime Performance

- MODIS TEB Calibration Algorithm
- Terra and Aqua MODIS TEB On-orbit Performance
 - Black Body Stability
 - Detector Response & Noise Performance
 - Noisy Detector History
 - Aqua CFPA Temperature Concern

Terra b1 Short-term Stability

2009/361

2003/295

Aqua b1 Short-term Stability

2002/266 2009/349 Band 20 Band 20 5.30×10⁻ 5.30×10⁻ 5.25×10⁻⁴ 5.25×10⁻⁴ 5.20×10 5.20×10 5.15×10 5.15×10⁻ 5.10×10 5.10×10 50 100 150 200 50 100 150 200 Scan Scan Band 30 Band 30 0.0038 0.0038 0.0037 0.0037 0.0036 0.0036 0.0035 0.0035 0.0034 0.0034 50 100 150 200 50 100 150 200 Scan Scan Band 32 Band 32 4.05×10⁻¹ 4.05×10⁻ 4.00×10^{-3} 4.00×10^{-3} 3.95×10⁻³ ⊢ 3.90×10^{-3} 3.90×10⁻³ <u>╸┙┾┼┼┼┼┼┼┼┼┙</u>┿┾**╞╞┝┼┙┼┙┼**┙┥┙┙┙┙┙┙┙ 3.85×10^{-3} 3.85×10⁻³ 200 50 100 150 200 50 100 150 Scan Scan

Page 72

Terra MODIS MWIR (Bands 20-25; Good Detector Average) Normalized 1/b1 & NEdT

Terra MODIS TEB LWIR Response Trend

Terra MODIS LWIR (Bands 27-36; Good Detector Average) Normalized 1/b1 & NEdT

Aqua MODIS TEB MWIR Response Trend

Aqua MODIS MWIR (Bands 20-25; Good Detector Average) Normalized 1/b1 & NEdT

Aqua MODIS TEB LWIR Response Trend

Aqua MODIS LWIR (Bands 27-36; Good Detector Average) Normalized 1/b1 & NEdT

MODIS Warm-up and Cool-down Process

NEdT @ Typical Temperature

TEB detector status (in current LUT)

Near Spec Out of Spec Inoperable

Instr.	Terra															Aqua									
Band	27					28			29	30					33	34			36	27	29	9	36		
Detector	1	2	3	6	8	1	8	9	10	6	1	2	3	5	8	1	5	6	7	8	all	3	2	8	5

- Terra PV bands on LWIR CFPA (band 27-30) slowly becoming noisy

– Aqua TEB performs better than Terra TEB

- MODIS TEB Calibration Algorithm
- Terra and Aqua MODIS TEB On-orbit Performance
 - Black Body Stability
 - Detector Response & Noise Performance
 - Noisy Detector History
 - Aqua CFPA Temperature Concern

Terra MODIS Noisy Detector History

Detectors in Product Order

	Band	nd 27						28					9	30					33	34				36
Day/Year	Spec NEdT[K]	0.25			0.25				0.0	05	0.25					0.25 0.25				0.35				
	Detector #	1	2	3	6	8	1	3	8	9	10	4	6	1	2	3	5	8	1	5	6	7	8	1-10
Pre-launch	-	0.10	0.11	0.08	0.10	0.08	0.05	0.05	0.04	0.05	0.04	0.02	0.02	0.09	0.08	0.09	0.09	0.09	0.14	0.20	0.20	0.21	0.20	0.45
055/2000	Nadir door open	0.09	0.10	0.10	0.09	0.03	0.05	0.06	0.06	0.05	0.05	0.02	0.02	0.09	0.10	0.06	0.11	0.11	0.28	0.23	0.26	0.27	0.29	0.43
232/2000	Back from FPA recycle	0.10	0.10	0.10	0.24	0.03	0.05	0.05	0.05	0.05	0.05	0.02	0.03	0.09	0.11	0.07	0.31	0.11	0.27	0.24	0.33	0.37	0.38	0.42
030/2001	-	0.10	0.13	0.11	0.27	0.03	0.05	0.06	0.05	0.05	0.05	0.02	0.02	0.13	0.12	0.07	0.29	0.30	0.25	0.24	0.33	0.37	0.37	0.43
087/2002	Back from safe mode	0.11	0.10	0.10	0.24	0.03	0.06	0.32	0.05	0.05	0.04	0.02	0.02	0.10	0.10	0.06	0.26	0.64	0.25	0.24	0.29	0.32	0.33	0.43
022/2003	-	0.10	0.10	0.10	0.23	0.03	0.05	0.30	0.27	0.04	0.04	0.02	0.02	0.11	0.10	0.06	0.25	0.65	0.27	0.25	0.33	0.37	0.37	0.43
086/2003	After DSM ¹	0.11	0.10	0.10	0.23	0.03	0.05	0.29	0.08	0.05	0.05	0.03	0.02	0.12	0.10	0.06	0.47	0.65	0.26	0.24	0.33	0.36	0.36	0.44
118/2004	-	0.26	0.11	0.10	0.26	0.03	0.05	0.16	0.36	0.05	0.16	0.02	0.03	0.12	0.10	0.06	0.33	0.41	0.27	0.21	0.29	0.32	0.32	0.43
158/2004	-	0.28	0.12	0.09	0.25	0.03	0.05	0.16	0.37	0.05	0.21	0.03	0.03	0.12	0.10	0.07	0.31	0.40	0.27	0.22	0.28	0.31	0.31	0.43
162/2004	-	0.26	0.12	0.10	0.27	0.03	0.05	0.16	0.37	0.05	0.20	0.02	0.03	0.13	0.14	0.06	0.32	0.42	0.27	0.22	0.30	0.34	0.34	0.43
175/2004	-	0.28	0.12	0.10	0.26	0.03	0.12	0.17	0.35	0.05	0.17	0.03	0.02	0.12	0.17	0.06	0.30	0.41	0.27	0.21	0.28	0.32	0.32	0.43
034/2005	-	0.28	0.11	0.10	0.22	0.03	0.10	0.16	0.45	0.05	0.16	0.04	0.02	0.12	0.17	0.06	0.31	0.39	0.26	0.21	0.28	0.31	0.31	0.43
130/2005	-	0.31	0.11	0.10	0.22	0.03	0.40	0.15	0.40	0.05	0.14	0.03	0.06	0.12	0.17	0.07	0.40	0.40	0.26	0.21	0.31	0.34	0.34	0.43
309/2005	-	0.30	0.12	0.10	0.21	0.03	0.09	0.14	0.35	0.30	0.18	0.03	0.04	0.12	0.18	0.06	0.31	0.40	0.24	0.21	0.27	0.30	0.30	0.43
053/2006	-	0.30	0.11	0.10	0.21	0.27	0.13	0.15	0.40	0.19	0.16	0.03	0.04	0.12	0.16	0.11	0.33	0.39	0.28	0.21	0.28	0.31	0.31	0.43
155/2006	-	0.26	0.11	0.10	0.21	0.11	0.10	0.14	0.46	0.10	0.15	0.03	0.05	0.11	0.14	0.26	0.31	0.41	0.24	0.21	0.28	0.31	0.31	0.44
241/2006	-	0.26	0.11	0.10	0.22	0.10	0.10	0.14	0.36	0.10	0.11	0.03	0.11	0.12	0.15	0.16	0.29	0.39	0.25	0.22	0.28	0.32	0.32	0.43
193/2007	-	0.28	0.11	0.19	0.20	0.11	0.07	0.14	0.35	0.10	0.11	0.03	0.10	0.12	0.13	0.14	0.27	0.36	0.25	0.21	0.27	0.30	0.30	0.43
308/2008	-	0.26	0.26	0.25	0.19	0.18	0.16	0.15	0.32	0.13	0.12	0.04	0.06	0.16	0.23	0.25	0.30	0.38	0.25	0.21	0.27	0.30	0.30	0.43
327/2008	-	0.35	0.26	0.26	0.26	0.18	0.16	0.15	0.32	0.13	0.12	0.04	0.06	0.27	0.23	0.25	0.30	0.38	0.25	0.21	0.27	0.30	0.30	0.43

¹Spacecraft Deep Space Maneuver

Near Spec Out of Spec Inoperable

- 2 new noisy detectors since last Science Team Meeting

(Band 27 detector 2 and band 30 detector 1)

Aqua MODIS Noisy Detector History

Detectors in Product Order

Band		20			27	2	36		
Day/Year	Spec NEdT [K]	0.05		0.20		0.25	0.	05	0.35
	Detector #	10	3	9	others	3	2	8	5
Pre-launch	-	0.05	0.16	0.28	near 0.2	0.10	0.02	0.02	1.34
175/2002	Nadir door open	0.03	0.23	0.23	near 0.2	0.09	0.02	0.02	1.28
183/2002	Back from safe mode	0.03	0.20	0.25	near 0.2	0.09	0.02	0.02	1.31
218/2002	Back from safe mode	0.03	0.19	0.26	near 0.2	0.09	0.02	0.02	1.32
255/2002	Back from safe mode	0.03	0.23	0.20	near 0.2	0.09	0.02	0.02	1.36
102/2003	-	0.03	0.43	0.19	near 0.2	0.09	0.02	0.02	1.31
201/2003	-	0.03	0.18	0.18	near 0.2	0.09	0.02	0.02	1.29
010/2005	-	0.03	0.17	0.19	near 0.2	0.23	0.02	0.02	1.35
359/2007	-	0.03	0.18	0.21	near 0.2	0.13	0.02	0.05	1.34
038/2008	-	0.03	0.19	0.19	near 0.2	0.14	0.05	0.05	1.34

Near Spec Out of Spec Inoperable

- No new noisy and inoperable detector since last Science Team Meeting

- MODIS TEB Calibration Algorithm
- Terra and Aqua MODIS TEB On-orbit Performance
 - Black Body Stability
 - Detector Response & Noise performance
 - Noisy Detector History
 - Aqua CFPA Temperature Concern

Aqua MODIS CFPA Temperature Fluctuation

- The cooler is controlled using SMIR temperature.
- Starting 2005, the fluctuation amplitude increases.
- The fluctuation is at orbital frequency (b1 calibration is scan-based).

→ slight oscillation in LWIR temperature (as in 2004) is normal.
→ a concern

 \rightarrow no impact on L1B product

TEB On-orbit Performance Summary

- BB temperatures remain stable (Terra 290K and Aqua 285K).
- Stable short-term and long-term detector response
 (excluding sensor configuration changes and instrument reset events)
- Terra PV band detectors on LWIR CFPA (band 27-30) slowly becoming noisy
- Terra MODIS has 23 noisy detectors and 1 inoperable detector
 (2 new noisy detectors since last Science Team Meeting)
- Aqua MODIS has 3 noisy detectors and 1 inoperable detector.
- Aqua cooler margin is a concern for CFPA short-term stability
 (unable to completely control the CFPA to the setting temperature)
- Current Aqua CFPA temperature fluctuation has no impact on L1B product

MODIS Spectral and Spatial Performance

SRCA Group

EOS

MODIS Spectral and Spatial Performance

- Spectro-Radiometric Calibration Assembly (SRCA)
 - Spectral mode
 - Spatial mode
- Spectral Characterization Results (VIS/NIR only)
 - Center wavelengths
 - Bandwidths
- Spatial Characterization Results (all bands)
 - Band-to-band Registration (BBR)
 - Along-scan and along-track
- Performance Summary
- SRCA Lamp Status

SRCA Spectral and Spatial Mode

SRCA Spectral Responses

Relative Responses Prior to Corrections

Page 89

Along-scan & track Positions

$$\overline{x}(b,ch) = \frac{\sum_{x=0}^{N_x} dn(b,ch,x) \cdot x}{\sum_{x=0}^{N_x} dn(b,ch,x)}$$

Terra MODIS Spatial Performance

Aqua MODIS Spectral Performance

Performance Summary

- SRCA Spectral Mode
 - Terra and Aqua MODIS spectral performances are stable on-orbit (VIS/NIR only).
 - CW and BW changes are less than 0.5nm except for bands 1 and 19 (large BW bands > 45nm)
 - Terra and Aqua band 8 results from 20W configuration are not reliable because of low SNR.
- SRCA Spatial Mode
 - The SRCA spatial mode provides stable on-orbit BBR trending for both along-scan and along-track directions (all 36 bands).
 - Terra bands 27, 28 and 30 are out-of-spec (relative to band 32).
 - Aqua MODIS had large BBR offsets (in both directions) between bands on Cold FPA and bands on warm FPA (a known problem since pre-launch).

SRCA Lamp Status

• As of 1-8-2010

Lamp	Power		10	1W				
Lan	np #	1	2	3	4	1	2	
	Usage	288.6	172.1	190.3	96.7	576.4	282.0	
Terra	Life	500	500	500	500	4000	4000	
	percent	57.7 %	Failed on 11-20-2004	Failed on 2-18-2006	19.3%	14.4%	7.1%	
	Usage	281.3	188.0	205.7	99.6	517.1	274.9	
Aqua	Life	500	500	500	500	5000	5000	
	percent	56.3%	Failed on 4-14-2003	Failed on 6-28-2005	19.9%	10.3%	5.5%	

MODIS Collection 6 Calibration and L1B Changes

MODIS Characterization Support Team 1/25/10

- Introduction
- Collection 6 LUT Changes Summary
 - RSB
 - TEB
 - QA
 - L1B Code
- Science Testing Status

MCST Collection 6 Information will be available on mcst.gsfc.nasa.gov

Introduction

- MODIS Collection History
 - Collection 2: Terra Launch June 2001
 - Collection 3: June 2001 Jan. 2003
 - Collection 4: Dec. 2002 early 2007
 - Collection 5: Feb 2005 present
 - Collection 6: Test L1B datasets available

MCST Collection 6 History

- Prototype delivery (V6.0.0.0/V6.0.1.0) Aug. 2008
- 1st official LUT delivery (V6.1.0.0/V6.1.1.0) Jan. 2009

RSB V6 Changes

- RSB LUT Improvements
 - SD D9 Degradation
 - $-\Delta m1$ correction
 - Time Dependent RVS B13-16
 - Detector Dependent RVS B8-12
 - Aqua: MS2 RVS
 - Refit coefficients for entire mission
- RSB LUT Alternative Approach
 LUTs derived using EV and lunar data

RSB V6 LUT – SDSM D9

- V5: Assumed no SDSM Detector 9 degradation
- V6: SD Degradation analysis now includes correction for D9 on-orbit degradation

RSB V6 LUT – $\Delta m1$ Correction

- V5: Detector dependent m1
- V6: Detector dependent m1 with correction applied to account for detector differences within a band.
- Improves striping performance.

RSB V6 LUT – RVS

- V5: RVS band averaged
- V6:
 - Time-dependent RVS for bands 13-16
 - Major improvement in lunar algorithm
 - Detector-dependent RVS derived for bands 8-12
 - Aqua RVS mirror side dependence derivation methodology modified to match that of Terra

RSB V6 LUT

- Reprocess coefficients for mission lifetime to date
 - Long-term trending has smooth performance

RSB V6 LUT – L1B Impact

MODIS Science Team Meeting – Calibration

- MCST developed RSB LUTs (m1 & RVS) derived only from EV and lunar data
 - Tied to historical SD measurements with forward LUTs independent of SD calibration.
 - Developed and delivered prototype LUTs to Ocean Group (OBPG) for testing.
 - Early results from ongoing testing by OBPG indicate improvement in Ocean products.

TEB V6 Changes

- A0/A2 Derivation strategy
- Reprocess coefficients for entire mission
 A0, A2, Band 21 b1
- Aqua B33, 35, & 36 Saturation Temp adjusted

TEB V6 LUT – A0/A2 Strategy

<u>Aqua</u>	V5
B20, 22-30	PL a0/a2
B21	a0 = 0 and $a2 = 0$
B31-32	Warm-up a0/a2
B33-36	a0 = 0, PL $a2$

<u>Terra</u>

B21

B33-36

V5 B20, 22-30 Warm-up a0/a2a0 = 0 and a2 = 0B29, 31-32 Warm-up a0/a2 a0 = 0, warm-up a2

V6

no change no change a0 = 0, cool-down a2no change

V6

Cool-down a0/a2 no change a0 = 0, cool-down a2a0 = 0, cool-down a2

Coefficients derived from quarterly BB Warm-up & Cool-down Activities

V6 Approach improves TEB performance for low temperature scenes

TEB V6 LUT Impact - Aqua

C6 Land Test Granule 2003001.1115

MODIS Science Team Meeting - Calibration

TEB V6 LUT Impact – Terra B20-28

At L_{typ} impact is minimal, at low EV scene temps V6 is generally colder than V5

TEB V6 LUT Impact – Terra B29-36

 $\frac{\text{EV Radiance Levels}}{0.3 \text{ L}_{\text{typ}} \text{ L}_{\text{typ}} 0.9 \text{ L}_{\text{max}}}$

- Fill Values replace Interpolation in L1B for Inoperable Detectors
 - Code change needed
- Subframe level QA flags
 - Code change needed
 - New QA LUT

QA V6 LUT – Fill vs Interpolation

- V5: Inoperable detectors filled with interpolated value from adjacent detectors
- V6: Science Team request to have no interpolation, explicit fill value for inoperable detectors

- V5: QA flags only on detector level
- V6: L1B code change implemented to allow QA flags at subframe level.
 - New QA LUT
 - Terra Band 2 Detectors 29 & 30 Subframe 1 flagged as 'Noisy' for V6 (known crosstalk issue)

artificially high radiance band

sector rotation

V6 L1B Code Change

- Sector Rotation Anomaly Fix
 - Anomaly in TEB data during certain sector rotation events (lunar calibrations)

Plots courtesy of S. Devadiga

V6 L1B Code Change

Fire Granule MYD14.A2008343.2235

C5 Fire Product using C5 L1B

C5 Fire Product using C6 L1B

Plots courtesy of S. Devadiga

MODIS Science Team Meeting - Calibration

V6 L1B Status

- V6 LUTs latest updates
 - Aqua V6.1.7.9 (12/17/09)
 - Terra V6.1.2.1 (10/06/09)
 - LUT updates delivered ~ every 3 months
- V6 L1B data currently available
 - Terra: Jan 1-16, 2003
 - Aqua: Jan 1-31, 2003
 - https://ladsweb.nascom.nasa.gov

V6 L1B Status

- Science Testing in progress
 - Test V5 Products generated using V6 L1B (Jan. 2003 L1B)
 - Terra & Aqua Land
 - Aqua only Atmosphere
 - Ocean (OBPG) generated test products for Aqua using both the official and alternate LUTs.
- All V6 L1B, Geolocation, & Cloud Mask/Profiles products will be generated and archived in LAADS