Development of new forward libraries for MOD06 optical properties

Introduction

Seven band look up tables (LUT) of the top of the atmosphere reflectance for a Lambertian surface of zero albedo were developed by radiative transfer calculations using DISORT. Based on our interpolation error investigations, the multiple scattering (MS) part of the reflectance is stored as a function of optical thickness (τ), effective particle radii (R_E), solar zenith (θ_0) , sensor zenith (θ) and relative azimuth $(\Delta \phi)$. The single scattering part of the reflectance can then be added dynamically to the interpolated multiple scattering part of the reflectance for a particular sun-satellite geometry. This approach significantly reduces the interpolation error.

Developing LUT over ocean with Cox-Munk surface BRDF is in progress and results from modeling clear sky radiances for sun glint scenes from Terra are very encouraging.

Method

Full Mult

- Construct several LUTs with different discretizations for solar, view and azimuth angles. We followed the same method of Andy Heidinger to discretize τ . Values upto 2.0 are discretized in linear τ space and discretization in $log(\tau)$ space for values beyond 2.0
- Linear Interpolation error estimates are calculated by choosing mid points of the pre constructed table as the truth
- Figure 1 shows the reflectance plotted, both multiple (blue) and full (red), in μ (=cos(θ) space and degree space
 - More linear in μ space (left hand side panel) than degree space (right hand side panel).

Figure 1. Top: Water cloud $\theta_0 = 35.7^\circ$, $\tau = 4.14$, $R_E = 10 \mu m$. Bottom: Ice cloud $\theta_0 = 35.7^\circ$, $\tau = 4.14$, R_E = 60 µm

NASA Goddard Space Flight Center, Greenbelt MD 20771 *Science Systems and Applications Inc., Lanham MD 20706

Nandana Amarasinghe^{*}, Steven Platnick and the Cloud Retrieval Group

Figure 4 B01-Ice, Multi Reflectance $\tau = 4.14$, $R_E = 60.0 \mu m$, $\theta_0 = 35^{\circ}$

Polar plot of error: WATER

Figure 5 CH01-Water, Multi Reflectance $\tau = 4.14$, $R_E = 10.0 \mu m$, $\theta_0 =$ 35°

Terra Sun Glint Scenes

Since we are planning to create a separate ocean LUT with a Cox-Munk surface BRDF, it is useful to see how the Cox-Munk model compare with real sun glint scenes. Radaitive transfer calculations were done to calculate clear sky radiances with

- 1. No Rayleigh scattering
- 2. With Rayleigh scattering
- 3. Rayleigh scattering plus a coarse mode aerosol layer with optical thickness of 0.1
- 4. Same as 3, but constant wind speed
- 5. Same as 3, different wind direction

MOD021KM.A2009296.2135

MOD021KM.A2009133.1915

are planned.

Constructed 6-parameter (λ , τ , θ_0 , θ , $\Delta \phi$, R_E) look up tables of the multiple scattering part of the reflectance by discretizing solar and view angles in μ space, with $\Delta\mu$ of 0.0125 for μ in [0.75, 1.0] and $\Delta \mu$ of 0.05 for $\mu \leq 0.75$, and relative azimuth in degree space with a $\Delta \phi$ of 5°. These new look up tables, used in C6, are in the process of being integrated into the retrieval code. Multi month sensitivity tests