

Dark Target aerosol retrievals from MODIS: What have we learned in 10 years

Robert Levy^{1, 2}, Lorraine Remer¹, Richard Kleidman^{1, 2}, Shana Mattoo^{1, 2}, Thomas Eck^{1, 3}, G. Leptoukh², R. Kahn², D. Tanré⁴ ¹NASA/Goddard Space Flight Center, Greenbelt, MD USA²Science Systems and Applications Inc., Lanham, MD USA ³UMBC/GEST, Baltimore, MD USA ⁴LOA, Lille, France Robert.Clev/@nasa.gov

Overall Performance and Data Quality

Global Scatterplots Define Global Expected Uncertainty

Compared to collocated AERONET observations on a global basis, we demonstrate global expected uncertainty of the Collect 5 Dark target AOD: Land: 1 \sigma (66%) of retrievals fall within ±(0.05+0.15r) Ocean: 1 \sigma (66%) of retrievals fall within ±(0.04+±0.05r)

Quality Confidence flags must be accounted for to achieve accuracy Land and Ocean: QAC > 0 for minimum acceptable statistics Land: QAC=3 for best agreement with AERONET Ocean: QAC≥1 for best agreement with AERONET

Regional Scatterplots Identify Systemic Regional Biases...

... and help to separate surface and model issues

Some regions are characterized by surface reflectance different than assumed by global algorithm, resulting in systematic AOD biases:

- The North American intermountain region is systematically 0.10 too high
- Urban centers such as New York City are also systematically too high
 South American Cerrado region is too low in the non-biomass burning season

Some regions are characterized by aerosol single scattering albedo or other properties that are different than assumed by the global algorithm, resulting in AOD biases:

South American Cerrado region is too high in the biomass burning season
 West African smoke/dust mixing region is too low.

Levy, R. C., L. A. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, and T. F. Eck, 2009: Atmos. Chem. Phys. Disc. In preparation

General Conclusions

- We have learned a great deal about the product the details of its strengths and limitations. We have defined global expected uncertainty and identified where and why we have systematic biases.
- 2. We have learned how sampling affects aggregation to temporal and spatial means.
- 3. We can use MODIS aerosol products to view the global aerosol system as a whole. For example we can identify interannual variability of the global and regional aerosol system.

Sampling, Aggregation and Global Mean AOD

Level 2 (L2) = basic 10 km retrieval L2 covers < 10% of the globe on any day -clouds, deserts, snow, glint -orbital gaps

Level 3 daily (D3) is *spatial* aggregate of L2 We have made *decisions* as to which L2 retrievals to include and how to weight them D3 covers ~ 30% of the globe

Level 3 monthly (M3) is temporal aggregate of D3 We have made decisions as to which D3 orid

squares to include and how to weight them M3 covers ~ 70% of the globe

Long term seasonal "mean" AOD Computed from Level 3.

What does this really mean?

which D3 grid o weight them

M3 (1*x1*): Terra: May 2003

L2 mean ≠ D3 mean ≠ M3 mean!!

It all depends on how you average the data
Daily Level 3 is "confidence weighted" by QA flags
Monthly Level 3 is "pixel weighted" by the number of L2 retrievals
Different methods accentuate different aspects of sampling
Global means can vary by as much as 40%, all using 'reasonable' methods of averaging.

Levy, R., G. Leptoukh, R. Kahn, V. Zubko, A. Gopalan, and L. Remer, 2009: IEEE Trans. Geosci. Remote Sens., 47, No. 9, 2942-2956.,