Assessing MODIS Aerosol Products Using AERONET Ground Measurements

Jing Li ${ }^{1,2}$, Barbara E. Carlson ${ }^{2}$ and Andrew A. Lacis ${ }^{2}$

1. Department of Earth and Environmental Sciences, Columbia University, New York, NY
2. NASA Goddard Institute for Space Studies, New York, NY

Contact: jl2862@columbia.edu

Introduction

MODIS aboard Terra and Aqua provides aerosol products including Aerosol Optical Depth (AOD) at several wavelengths, as well as Angstrom Exponent (AE) which is an indication of aerosol size.
The AOD product has been extensively validated and algorithmic changes have been made to imThe AOD product has been extensively validated and algorithmic changes have been made to improve the accuracy of the AOD retrievals. Changes for MODIS Collection 5 included a new surfa reflectance parameterization, aerosol optical models and improved assumptions relating how the
$2.12 \mu \mathrm{~m}$ channel relates to surface and surface properties. Aerosol size distribution is also crucial in studying their climate effects, especially when using climate models. Yet it is still a poorly constrained quantity. Here we assess the accuracy of the MODIS Angstrom Exponent and AOD prodstrained quantity. Here we assess the accuracy of the MODIS Angstrom Exponent and AOD prod-
ucts using AERONET ground measurements. Since the accuracy of AE depends on the magnitude ucts using AERONET ground measurements. Since the accuracy of AE depends on the magnitude
of AOD, it is necessary to simultaneously consider both AOD and AE. Here we report the results of our investigation for 10 AERONET stations representing six different aerosol types. These locations have been chosen based on aerosol type, differences between MODIS and AERONET retriev als and illustrate the dependence of the MODIS AE and AOD products on the details of the retrieval algorithm.

Data and Method

In this study, we use Version 2, Level 2.0 quality assured all points AERONET AOD and Angstrom Exponent data. The MODIS data are collection 5, level 2 land and ocean AOD and AE data from both Terra and Aqua. For each site we have examined all of the data. In this poster, representative years have been selected for illustration purposes. A primary factor in selecting the year is the number of colocated measurements available and overall data quality. In order to select colocated MODIS and AERONET data, we adopted the following strategy:
AERONET AOD that is obtained within +/- $\mathbf{1 5}$ minutes of the MODIS overpass time is selected and interpolated to get 550 nm value using the Angstrom relationship;
2. At the corresponding MODIS overpass time, we select pixels that lie within $+/-0.25$ degree of the AERONET station and calculate their mean and standard deviation;
We select the five nearest pixels that lie within mean $+/$ - standard deviation, and calculate their dista
the AERONET station.

Locations of AERONET stations used in this study

1. Urban/Industrial Aerosols: GSFC and Bondville

2. Aerosols over the Ocean: Midway_Island and Capo_Verde

3. South America Biomass Burning: Alta_Floresta and Abracos_Hill

$$
1
$$

Over the two South American sites dominated by biomas burning aerosols, while MODIS AOD agrees well with
AERONET, their AE differ. The difference between the AEs also decreases as AOD increases. However, even at larger AOD, MODIS still underestimates AE while over-
estimates AOD. We suspect that this results from cloud contamination. In the two figures shown below, we comcontamination. In the two figures shown below, we com-
pare the MODIS level 3 monthly mean product with the
monthly mean calculated using colocated data, which inmonthly mean calculated using colocated data, which in
cludes only the AERONET determined clear-sky values. cludes only the AERONET determined clear-sky value
We find that during the peak in the biomass burning We find that during the peak in the biomass burning
season (September and October), MODIS AOD decrea while AE increases going from monthly mean to
AEROET colocated average data suggesting that AERONET colocated average data suggesting that there is some degree of cloud contamination
that effects the AOD and AE values.

4. South Africa Biomass Burning: Mongu and Skukuza

5. Mixture of Dust and Biomass Burning over the Sahel: Ilorin

6. Mixture of Biomass Burning and Industrial Pollution over SE Asia: Pimai

Conclusions

1) While the MODIS aerosol optical depth product generally agrees well with AERONET measurements, comparatively larger differences are observed in the Angstry
2) At urbanindustrial pollution sites, the difference between MODIS and AERONET AE depends on the magnitude of AOD and tends to decrease as AOD increases 3) MODIS AE agrees with AERONET values over the oceans only with small biases at low aerosol loading;
3) MODIS AE agrees with AERONET values over the oceans only with small biases at low aerosol loading;
4) MODIS overestimates AOD while underestimates AE over South America, suggesting possible problems
of monthly mean and colocated (AEROENT determined clear) data;
of monthly mean and colocated (AEROENT determined clear) data;
5) MODIS AE seasonal variation significantly differs from AERONET over South Africa and Pimai (SE A
descrittion of aerosol types used in MODIS retrieval for smoke and developing world urban aerosols;
description of aerosol types used in MODIS retrieval for smoke and developing world urban aerosolss
6) Over the Sahel, the complex yertical distribution of the aerosol may be contributing to the MODS AE

Future Work

effects;
2) Further investigate the effect of cloud contamination over South America and its influence on the study of global climate using satellite data
3) Further study the characteristics of biomass burning aerosols over South Africa and Southeast Asia, especially aerosol size distribution and single
provide information to improve MODIS retrieval;
4) Study the effect of different height distribution of dust and biomass
5) Long-term comparisons on the trend of global AOD and AE.

