# Aerosol properties near clouds

Alexander Marshak and Tamás Várnai

NASA GSFC and UMBC JCET

R. Cahalan, F. Evans, G. Wen, W. Yang







### Aerosol measurements near clouds are important



#### **Motivation:**

- Help satellite studies of aerosol-cloud interactions
- Aerosol remote sensing near clouds is challenging
- Excluding areas near-cloud risks biases in aerosol data



### **MODIS reflectances increase near clouds**



#### **Reflectance increase may come from:**

- •Aerosol changes (e.g., swelling in humid air)
- •Undetected cloud particles
- •Instrument imperfections
- •3D radiative effects



#### CALIOP backscatter and particle size

#### Far from clouds (> 5km)



global night data over ocean July 8 – Aug 7, 2007

#### CALIOP backscatter and particle size

#### Close to clouds (< 5km)



global night data over ocean July 8 – Aug 7, 2007

#### Enhancements occur over all oceans



CALIOP 532 nm backscatter ( $\beta$ ) enhancement  $\beta_{d<5km} - \beta_{d>5km}$ 



### **MODIS can add cloud information**





### 1D & 2D cloud masks yield similar enhancements



#### **3D-related increases should be asymmetric**

#### LES liquid water path







#### $R_{3D}-R_{1D}$ (0.47 µm)



3D effect: enhancement everywhere (outside shadows)

## Asymmetry stronger at shorter $\lambda$ : 3D is important





Várnai and Marshak (2009)

# Strong increase near thick clouds agrees with 3D

#### MODIS reflectances near clouds of various optical thicknesses



### Simple model to correct for 3D enhancement

| Rayleigh layer     |  |
|--------------------|--|
|                    |  |
| Broken cloud layer |  |

$$R_{\text{corrected}} = R_{\text{MODIS}} - \Delta R(\tau_{\text{Rayleigh}}, F_{\text{reflected}})$$



# Test shows assumption works for radiances



### **Test scene near New Zealand**



### **MODIS cloud products**



#### Albedo and AOT



#### **Correction reduces some AOT values**



### **Correction reduces fraction of small aerosols**



Wavelength

# Summary

- Clouds are surrounded by a wide (>10 km) transition zone of enhanced particle size and light scattering. This transition zone needs to be considered in studies of aerosol radiative effects and aerosol-cloud interactions.
- 3D radiative processes play an important role in enhancing clear sky solar reflectance near clouds. A simple two-layer model shows promise for considering these processes in passive satellite remote sensing.
  - A synergy of passive (MODIS, CERES and WFC) and active remote sensing (CALIOP) can help better understand and measure aerosol properties near clouds.



### Cloud fraction affects typical distance to clouds



Annual median distance to clouds below 3 km



Annual mean cloud fraction



0.2 0.4 0.6 0.8 1.0 0.0 Mean cloud fraction

### Cloud mask affects increase mainly near clouds



### Median relative near-cloud enhancements

# MODIS



# CALIOP



# CALIOP: increases occur below cloud top



### CALIOP: increases occur below cloud top



#### Increases suggest large changes in AOT

