MODIS Atmosphere Solar Reflectance Issues

1. Aqua VNIR focal plane empirical re-registration status

Ralf Bennartz, Bob Holz, Steve Platnick² ¹ U. Wisconsin, Madison, ² NASA GSFC

2. Terra trend anomalies in cloud and aerosol data records Steve Platnick¹, Rob Levy²

¹ NASA GSFC, ² SSAI

MODIS Cal-Val Mtg., 17 May 2011

MODIS Atmosphere Solar Reflectance Issues

1. Aqua VNIR focal plane empirical re-registration status

Ralf Bennartz, Bob Holz, Steve Platnick² ¹ U. Wisconsin, Madison, ² NASA GSFC

2. Terra trend anomalies in cloud and aerosol data records Steve Platnick¹, Rob Levy² ¹ NASA GSFC, ² SSAI

MODIS Cal-Val Mtg., 17 May 2011

Overview

- AQUA MODIS VNIR focal plane arrays are misregistered by about 200m (cross-track) to 500m (along-track) relative to the SWIR/MWIR/TIR focal plane arrays.
- Misregistration expected to be important for algorithms that use both VNIR and other bands and observe strong spatially inhomogeneous scenes (e.g., cloud properties for trade Cu clouds).
- A revised VNIR 250 m → 1 km empirical aggregation approached had already been developed to minimize the misregistration.
 - Empirically-derived weights minimize focal plane mismatch from 250m resolution channels by minimizing the cross-correlation between aggregated VNIR vs. SWIR bands for selected scenes (Levenberg-Marquardt minimization).
 - Empirical weights used to aggregate 250m data to a 1 km file.
- New method has been tested in the UW-Madison Atmosphere PEATE for two months of Aqua MODIS data.
- Results for Level-1 results are reported here.
- Study on impact of new/old aggregation on Level-2 cloud products is ongoing.

Results for new Level-1 1km aggregation

- New aggregation method provides significantly better co-registration results VNIR with SWIR/MWIR bands than standard method. Results with new method are similar to Terra-MODIS (Terra-MODIS does not suffer from this issue and can be used as a reference).
- As expected, inhomogeneous cloud scenes are significantly affected. In those scenes the correlation between VNIR and SWIR/SMIR channels is significantly improved (see example).
- For homogeneous scenes the new method does not affect results.
 - About 10 % of the MODIS aggregated VNIR pixels show a difference larger than 0.01 in reflectances between the new and old aggregation scheme. About 1% of the pixels show a difference larger than 0.05 in reflectance.
- Initial results for Level-2 cloud products show small but potentially systematic differences in cloud mask and optical properties retrievals in certain cloud regions. Testing impact on C6 cloud product test code is ongoing.

MODIS Atmosphere Solar Reflectance Issues

 Aqua VNIR focal plane empirical re-registration status Ralf Bennartz, Bob Holz, Steve Platnick²
¹ U. Wisconsin, Madison, ² NASA GSFC

2. Terra trend anomalies in cloud and aerosol data records Steve Platnick¹, Rob Levy² ¹ NASA GSFC, ² SSAI

MODIS Cal-Val Mtg., 17 May 2011

Annual Mean (July 2000 – June 2001)

Cloud Optical Thickness, water clouds, Terra (10° binning, daytime observations only)

Optical Thickness Trends (July 2000 – June 2010)

0

Trends Masked by Significance Level < 0.05

Platnick and Levy, MODIS Cal-Val, 17 May 2011

Annual Mean (July 2002 – June 2001)

Cloud Optical Thickness, water clouds, Aqua (10° binning, daytime observations only)

Optical Thickness Trends (July 2002 – June 2010)

Trends Masked by Significance Level < 0.05

Trends in C5 Terra AOD over land: Artificial?

- A) Terra and Aqua show different AOD trends over land (Terra's is statistically "significant")
- B) Difference with AERONET shows trend for Terra but not Aqua
- C) Consistent with trend in "Earth View" calibration of Band #3 (0.47µm) used for AOD retrieval

Platnick and Levy, MODIS Cal-Val, 17 May 2011

Instrument Artifacts? Trends (%/decade), ±60° latitude, areal averaging

Cloud Optical Thickness, Land (~ band 1)

	Aqua (8 yrs)	Terra (8 yrs)	Terra (10 yrs)
$ au_{liquid}$	-3.44	-15.62	-14.56
$ au_{ice}$	-0.98	-11.20	-10.71

Cloud Optical Thickness, Ocean (~ band 2)

	Aqua (8 yrs)	Terra (8 yrs)	Terra (10 yrs)
$ au_{liquid}$	-2.6	-12.6	-10.0
τ_{ice}	-1.4	-13.1	-10.5

Aerosol AOD, Land (~ band 3)

	Aqua (8 yrs)	Terra (8 yrs)	Terra (10 yrs)
τ _a (pixel-weighing of grids)	-1.0	-24.0	-12.4
τ_a (no weighting)	-0.9	-25.9	-15.3

Platnick and Levy, MODIS Cal-Val, 17 May 2011

