

MODIS Meeting College Park, MD 19 May 2011

Using MODIS snow cover fraction in the NASA GEOS-5 modeling and assimilation system

Rolf Reichle, Ally Toure, and Gabrielle De Lannoy

Global Modeling and Assimilation Office NASA Goddard Space Flight Center Phone: 301-614-5693 Email: Rolf.Reichle@nasa.gov

Outline

ROSES Terra/Aqua proposal: *"Enhancing NASA GEOS data products through multi-variate assimilation of land surface observations from Aqua and Terra"* Just getting started...

This presentation:

- 1. Evaluation of GEOS-5 products vs. MODIS SCF
- 2. Assimilation of MODIS SCF
- 3. The SMAP Level 4 Carbon product

MERRA: Recently completed re-analysis

- GEOS-**5.2.0**
- 1979-present, continued updates w/ ~1 month latency, global
- Resolution: Lat=0.5° Lon=0.67°, 72 vertical levels
- MERRA-Land: Enhanced land enhanced product for land surface hydrological applications (Reichle et al., J. Clim., 2011)

"Forward processing"

- Near-real time, global
- Currently using GEOS-5.2.0
- From ~June 2011:

GEOS-**5.7.1** (incl. GCM revisions a.k.a. "Fortuna") Resolution: Lat=0.25° Lon=0.3125°, 72 vertical levels

Land-only ("off-line") replay

Parameter	Description	Units	MERRA	Fortuna
SATCAP	Capacity of canopy interception reservoir	kg/m ²	1.0*LAI	0.2*LAI
FWETL	Areal fraction of canopy leaves onto which large- scale precipitation falls	[-]	1.0	0.02
FWETC	Same as FWETL but for convective precipitation	[-]	0.2	0.02
WEMIN	Min. SWE in snow-covered area fraction	kg/m²	13	26
DZ1MAX	Max. depth of uppermost snow layer	m	0.05	0.08

MERRA-Land has improved estimates of soil moisture, runoff, canopy interception, and evapotranspiration (Reichle et al., J. Clim., 2011),

BUT

if we look at snow cover fraction and compare to MODIS...

Categorical analysis of snow cover fraction vs. MODIS

MOD10C2, aggregated to monthly avg. SCF

MERRA SCF agrees well with MODIS SCF observations.

False alarm rate increases in MERRA-Land.

Snow cover extent (SCE) v. MODIS

*RMSE normalization vs. max annual SCE.

1. Evaluation of GEOS-5 products vs. MODIS SCF

2. Assimilation of MODIS SCF

3. The SMAP Level 4 Carbon product

Assimilation of MODIS snow cover fraction (SCF)

Noah land surface model (1 km resolution) 100 km X 75 km domain in northern Colorado

Multi-scale assimilation of MODIS SCF and AMSR-E SWE observations.

Validation against in situ obs from COOP (Δ) and Snotel (•) sites for 2002-2010.

MODIS SCF successfully adds missing snow, ... except during melt season.

MODIS SCF also improves timing of onset of snow season (not shown). See **poster** by *De Lannoy et al.* for more information.

1. Evaluation of GEOS-5 products vs. MODIS SCF

2. Assimilation of MODIS SCF

3. The SMAP Level 4 Carbon product

SMAP Level 4 soil moisture and carbon products

Summary

Used MODIS snow cover fraction (SCF) to assess GEOS-5.

SCF estimates from (old) MERRA system agree better with MODIS than those from (new) GEOS-5.7.1 system (but SWE estimates are comparable; not shown).

MODIS provides helpful information for model development.

MODIS SCF assimilation:

- can improve model snow estimates, and
- will be included in GEOS-5 land assimilation system.

MODIS GPP heritage contributes to SMAP Level 4 Carbon product.

Thanks for listening!

Questions?

Precipitation

MERRA – GPCPv2.1

 \rightarrow Correct MERRA precipitation with global gauge- and satellite-based precipitation observations to the extent possible.

Reichle et al. J Clim (2011) submitted

Precipitation corrections

Soil moisture validation (2002-2009)

GPCP corrections yield significantly better runoff for Arkansas-Red. MERRA and MERRA-Land (0.5 deg) better than ERA-Interim (1.5 deg). *Not shown:* In all cases the revised interception parameters yield improved runoff anomalies (albeit not significant).

Snow water depth

MERRA and MERRA-Land have similar skill.

Low R values in areas without in situ observations.

Not shown: Similar result for comparison against in situ data (583 stations) and for snow water equivalent (SWE).

L4_C baseline algorithm

<u>Product</u>: Net Ecosystem CO_2 exchange (NEE = GPP - R_{eco})

- Motivation/Objectives: Quantify net C flux in boreal landscapes; reduce uncertainty regarding missing C sink on land (NRC Decadal Survey);
- Approach: Apply a soil decomposition model driven by SMAP L4_SM & ancillary (LC, GPP) inputs to compute NEE;
- Inputs: Daily surface (<10cm) SM & T (L4_SM), LC & GPP (MODIS, VIIRS);
- **Outputs**: NEE (primary/validated); R_{eco} & SOC (research);
- **Domain**: Vegetated areas encompassing boreal/arctic latitudes (≥45 N);
- Resolution: 9x9 km;
- Temporal fidelity: Daily (g C m⁻² d⁻¹);
- Latency: 14-day;
- Accuracy: Commensurate with tower based CO_2 Obs. (RMSE \leq 30 g C m⁻² yr⁻¹ and 1.6 g C m⁻² d⁻¹).

L4_C algorithm options

- Several L4_C options are being evaluated based on recommendations from an earlier ATBD peer-review; options designed to enhance product accuracy & utility include:
- Global domain encompassing all vegetated land areas;
- Internal GPP calculations using SMAP L4_SM, L3_FT & ancillary land cover (LC) & VI (e.g. NDVI from MODIS, VIIRS) inputs;
- Represent finer scale (<9km) spatial heterogeneity consistent with available LC inputs;
- Explicit representation of LC disturbance (fire) and recovery impacts;
- Algorithm calibration using available observation data (FLUXNET, soil inventories).

