

Development of Novel MODIS Global Ocean Data Products: CDOM and DOC

Antonio Mannino¹ & David Lary² ¹NASA Goddard Space Flight Center ²University of Texas at Dallas

Acknowledgements: Stan Hooker, M. Mulholland, K.C. Filippino, M. Novak, R. Morrison, M. Twardowski, K. Hyde, J. O'Reilly, NASA OBPG and NOAA.

MODIS Team Meeting May 17-20, 2011

Why study DOM?

- Major component of the global carbon pool
- Accounts for 12-50% of phytoplankton production
 - Underestimation of Ocean's primary production
- Source of nutrients & energy for the microbial community
- Predominant flux of carbon from coast to ocean occurs through DOM
 - Applications of Satellite-Derived CDOM
- Retrieve coastal DOC and salinity
- Estimate photochemical production of CO₂ and CO
- Track water masses including river plumes; upwelling
- Measure of AOU (particle remineralization)*

*Swan et al. 2009; Nelson et al. 2010

Objectives

- Develop and validate global ocean satellite algorithms that will yield new MODIS ATBDs for:
 - Colored Dissolved Organic Matter (CDOM) absorption coefficient (а_{CDOM})
 - CDOM Spectral slope (S_{CDOM})
 - Dissolved Organic Carbon (DOC)

• Examine the seasonal, inter-annual and decadalscale variability of global ocean surface layer DOC, а_{соом} & S_{соом} for SeaWiFS-MODIS time series.

Algorithm Development

- Extend and validate coastal ocean band-ratio algorithms for a_{CDOM} and S_{CDOM} to the global ocean.
- Evaluate GIOP model with variable CDOM spectral slope
- Develop and validate multivariate machine learning algorithms including neural network and Gaussian Process models to retrieve DOC, a_{CDOM} and S_{CDOM} .
- Compare a_{CDOM} products with GSM and QAA products
- Select best performing algorithms using statistical plotting tools (Taylor and Target diagrams)

Field Stations for Coastal Algorithms

Lower CB: July 2004 to May 2006

Multi-regional CDOM Algorithms - in situ data

2.5 in situ observations Model one-phase decay $a_{CDOM}(412) = \ln([Rrs412/Rrs555-0.257]/$ 2 Rrs(412)/Rrs(547) (sr⁻¹) Model 3rd Order Polynom. 4.21)/-14.5 1.5 $R^2 = 0.948$ $Rrs412/Rrs555 = 0.18 - 0.22X - 0.26X^2 - 0.26X^2$ Sy.x = 0.0770.16*X³ 1 $R^2 = 0.939$ $X = \ln[a_{CDOM}(412)]$ Sy.x = 0.0842.5 0.5 N ~ 145 in situ observations Model one-phase decay 2 0 Rrs(412)/Rrs(555) (sr⁻¹) Model 3rd Order Polynom. 4.0 0.0 0.5 2.5 3.0 3.5 1.0 1.5 2.0 a_{CDOM}(355) (m⁻¹) 1.5 $R^2 = 0.950$ Sy.x = 0.085 $a_{CDOM}(355) = \ln([Rrs412/Rrs547-0.272]/$ 4.49)/(-5.78) 1 $R^2 = 0.951$ Sy.x = 0.082 $Rrs412/Rrs547 = 0.3 - 0.12X + 0.17X^2 -$ 0.5 N~145 0.19X³ $X = ln[a_{CDOM}(355)]$ 0 0.0 0.3 0.6 0.9 1.2 a_{CDOM}(412) (m⁻¹)

1.5

Radiometry data from Stan Hooker

Regional & Seasonal DOC:aCDOM Relationships

3	800			R ²	² = 0.9	96	R ² =	0.92	44	-			GoM	the second
2	250	R	² = 0.9	90			R ² =	88.0	42 42 40	2 -		NYB		
	200								E T S				0 4 X 4	GoM OCV BIOME CBP CBH
μ)							R^2	= 0.9	36	·	SMAB		_	
ن 1 رز	50						R ² =	0.92		-76	-74	-72 -70	-68	-66
Ľ							$R^2 =$	0.97				Longitudo		
1	00			Sout	hern M	AB Sum	imer							
				Sout	hern M.	AB Fall, / 2008	Winter	& Spring)					
	50			Del I Hud	Bay Sur	nmer 20 v & Nov	05 & 20 2007 &)06 May 20	09					
				GoM	I late M	ay & ear	ly June	2007	00					
	0			GoM	I late Ap	oril 2007								
	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0					
				a _{CDOM}	₄ (355)	(m ⁻¹)								

• DOC per unit a_{CDOM} increases from N to S: differences in source materials, such as more colored terrestrial DOM exported to the GoM due to the absence of large estuaries where the DOM can be degraded.

• Seasonal shift in DOC to a_{CDOM} relationships from accumulation of DOC from NCP and photooxidation of CDOM between spring and fall.

Preliminary Satellite Validation with Field Data

Recent sampling should increase N to ~100 match-ups

DOC 2004 Monthly Composites -MODIS-A 4km

Seasonal increase in DOC from winter to summer

DOC inventory in the MAB for winter 2004

Bathymetry

Vertically integrated DOC February 2004

DOC inventory = $\sim 3.4 \times 10^{12}$ g C Depth integrated over top 100m for bathymetry 10-100m 35° to 41.5°N, -77 to -71.5°W

Open Ocean CDOM vs DOC

No trend between a_{CDOM} and DOC in ocean basins; positive trend between DOC and SST (Siegel et al. 2002)

Coastal ocean machine learning DOC algorithms

Applied all Ocean MODIS-Aqua bands
Randomized dataset: 80% to generate model; 210% to compute RMS; 10% for model validation
Need ~1000 or more data points for more robust model

	Wavelength	Relative Importance					
tant	Rrs490	0.00087123					
Iodu	Rrs555	0.011976					
-	Rrs670	1.5876					
_ ۲	Rrs510	9.8423					
ortan	Rrs443	13.0898					
Jupodu	Rrs412	20.2553					

The Impact of Climate Variability on Primary Productivity and Carbon Distributions in the Middle Atlantic Bight & Gulf of Maine (CliVEC)

- Field Observations
 - PP, pigments, POC/PN, DOC/ TDN, DIC, alkalinity, a_{CDOM}, a_{ph}, a_d, N₂ fixation, nutrients, beamc, FDOM, phyto cell counts, N uptake, respiration, ...
- PP model development
- Algorithm development and validation
- Satellite data processing
- Climate change impact analysis

co-ls: M. Mulholland, K. Hyde & D. Lary

Other Field Data for Global Algorithms

- NOMAD portion of SeaBASS
- Field datasets from Equatorial Pacific, Tropical North Atlantic, Southern Ocean and Patagonian shelf/slope waters.
- DOC from Hansell & Carlson public databases
- BCO-DMO database

Algorithms Comparison with Taylor Diagram

Taylor diagram quantitatively compares the centered-pattern root-mean-square difference, normalized standard deviation, correlation of satellite-derived and observed time series in a given dataset (e.g., by sensor, algorithm, region, season, etc.), and bias between satellite and field data.

Thanks

SeaWiFS

August 1997 - 11 December 2010