Phytoplankton cell size from ocean color imagery: connection to variability in the ocean carbon sink

> Colleen Mouw and Galen McKinley University of Wisconsin-Madison

Photo David Doubilet

Ecological Importance of Cell Size

Small cells:

- recycled within euphotic zone
- utilizing regenerated nutrients
- Prefer stratified high light conditions
- Large cells:
 - sink out of the euphotic zone
 - utilize new nutrients efficiently
 - Prefer turbulent, low light conditions
- Unifying principals that mechanistically explain global, annual mean patterns and seasonal to interannual variations in particulate flux to depth remain elusive.
- Links between variation in export and air-sea CO_2 flux and its temporal variation have only begun to be explored.
- Previous studies suggest [Chl] and PP are not enough to accurately predict flux.
- Phytoplankton cell size is a critical determinant of flux.

Optical Importance of Cell Size

Despite the physiological and taxonomic variability, variation in spectral shape can be defined by changes in the dominant size class.

Ciotti et al. 2002

 $a^*_{ph}(\lambda) = [(1-S_f) \times a^*_{pico}(\lambda)] + [S_f \times a^*_{micro}(\lambda)]$

Package effect

Motivation

R_{rs}(λ) data contains more information than just concentration.

 $R = \log\{(R_{rs}443 > R_{rs}490 > R_{rs}510)/R_{rs}555\}$

• SeaWiFS standard chlorophyll algorithm (OC4).

O'Reilly et al. 1998

Effect of [Chl]on $R_{rs}(\lambda)$

Maximum **band shifts** from 443 to 490 to 510 nm with increasing chlorophyll concentration

Spectral shift

Effect of Cell Size on $R_{rs}(\lambda)$

 S_{fm} varying Constant [Chl] = 0.5 mg m⁻³ Constant $a_{CDM}(443) = 0.002 m^{-1}$

Magnitude shift!

Mouw & Yoder, 2010

Contribution of S_{fm} & [Chl] to $R_{rs}(\lambda)$

Mouw, Yoder & Doney, submitted

Full Variability

Size Impact on OC4 [Chl]

LUT Retrieval

Phytoplankton Size Retrieval

High CDM/Chl

Low Chl

- Land/Cloud
- Process the remainder of the SeaWiFS mission
- Process MODIS-Aqua for the whole mission

No flag

Beyond NE ΔR_{rs} thresholds

Mouw & Yoder, 2010

Validation

- 85% within 1 standard deviation
- 11%, 2 std. dev.
- 4%, 3 std. dev.

Publication	Validation Measure	Mouw & Yoder, 2010
Kostadinov et al., 2009	$r^2 = 0.21$ for PSD slope	$r^2 = 0.60$ for all data
Kostadinov et al. 2010	r ² =0.415, RMS=17.1	r ² = 0.60, RMS=12.6
Uitz et al., 2006	log ₁₀ (predicted/measured) median=0.02 mean= -0.012 std. dev.=0.883	log ₁₀ (predicted/measured) median=0.0058 mean=0.0054 std. dev.=0.2315
Hirata et al., 2008	classification success all data from AMT-07=73%	classification success within first std. dev. = 84%
Alvain et al., 2008	classification success all data=57%	classification success within first std. dev. = 84%

Mouw & Yoder, 2010

Export Processes

Biological pump efficiency – biologically mediated export of carbon from the surface ocean and its remineralization with depth.

Flux Variation with Depth

Guidi et al. 2009

Flux Variation with Depth

Previous Satellite Retrieval of Export

$$p(\Delta z) = pr_d \exp\left(\frac{-\Delta z}{rl_d}\right) + pr_r$$

 $p(\Delta z)$: particulate flux : total production pr_d : liable export fraction rl_d : remineralization scale pr_r : refractory export fraction

(B) 0.4 pr 0.3 0.2 0.1 1500 (D) 2000 1200 1500 900 1000 600 686 300 0.008 0.016 (E) (F) 0.006 0.004 0.002 2.1 2.6 3.5 20-**SVI** of production SST (°C)

Relationships developed with selection of only data points that yielded a statistically significant fit – Does not add mechanistic understanding

Lutz et al. 2007

Previous Modeling of Export

Individual EOF – Mode 1

- Global syntheses for particle export & remineralization have done a good job capturing differences between regions, but a poor job capturing seasonal & interannual variations at individual locations.
- Phytoplankton cell size displays greater interannual variability than chlorophyll

- [Chl] adjustments to seasonal cycle
- S_{fm} ENSO relations

Refine Dunne et al. (2005) & Lutz et al. (2007) using phytoplankton size as a key predictor.

http://darwinproject.mit.edu

Percentage of "r" Strategists

Emergent Functional Groups

Green: *Prochlorococcus* Follows et al. 2007 Orange: small photo-autotrophs Red: diatoms Yellow: large phytoplankton

 Update export parameterization to include lithogenic & other mineral ballasting.
Incorporate improved understanding of how phytoplankton size structure controls particle export & remineralization.

Objectives & Questions

Objectives -

- 1) Use newly available satellite retrievals of phytoplankton community size structure to refine algorithms for sinking biogenic particles and their remineralization at depth.
- 2) Integrate into the Darwin model to improve export parameterization.
- 3) Use the improved Darwin model to understand connections to ocean carbon uptake and storage.

Questions –

- 1) Do satellite retrievals of phytoplankton size structure improve empirical algorithms for the export of biogenic particles from the surface ocean and their remineralization at depth?
- 2) How does the variability in the surface ocean phytoplankton size structure impact the biological pump of carbon to the deep ocean?

Acknowledgements

- Jim Yoder (WHOI)
- Jay O'Reilly and Kim Hyde (NOAA, NMFS)
- Tatiana Rynearson and Maureen Kennelly (URI, GSO)
- Benjamin Beckmann (GE Global Research)
- Scott Doney and Ivan Lima (WHOI)
- NASA OBPG & SeaBASS

