A collaborative supercomputing environment for global change science

Earth Science Division/NASA Advanced Supercomputing (NAS)
Ames Research Center
http://www.nex.arc.nasa.gov
Rama Nemani (rama.nemani@nasa.gov)

Providing direct access to data, models, analysis tools, and scientific results through a supercomputing platform that fosters knowledge sharing, collaboration, and innovation.

MODIS Science Team meeting, May 20, 2011
Outline for the presentation

- Motivation
- Concept/Components
- Status
- Current projects
 - Modeling
 - Data Analysis
 - Applied science
 - National Climate Assessment
- Summary
Inspiration

Experimental
Theoretical
Computational
Data-intensive

The Fourth Paradigm
Data-Intensive Scientific Discovery

Edited by Tony Hey, Stewart Tansley, and Kristin Tolle

James Gray
We spend too much time dealing with data, not enough on analysis
80/20 to 20/80

Moving large data sets through network is not easy
Move the code to data

One scientist/one project paradigm is old for multi-disciplinary-era
Collaborate

Repeated low-level IT efforts waste time/resources
reuse and share software

Need mechanisms that allow transparency/repeatability
Capture workflows
HECC Project conducts work in four major technical areas

Supercomputing Systems
Provide computational power, mass storage, and user-friendly runtime environment through continuous development and deployment of management tools, IT security, systems engineering

Application Performance and Productivity
Facilitate advances in science and engineering for NASA programs by enhancing user productivity and code performance of high-end computing applications of interest

Data Analysis and Visualization
Create functional data analysis and visualization software to enhance engineering decision support and scientific discovery by incorporating advanced visualization technologies and graphics displays

Networking
Provide end-to-end high-performance networking to meet massive modeling and simulation data distribution and access requirements of geographically dispersed users

Supporting Tasks
- Facility, Plant Engineering, and Operations: Necessary engineering and facility support to ensure the safety of HECC assets and staff
- Information Technology Security: Provide management, operation, monitoring, and safeguards to protect information and IT assets
- User Services: Account management and reporting, system monitoring and operations, first-tier 24x7 support
Leveraging collaborative research tools at NASA
Example Usage

- User registers and specifies resource requirements: data, tools, models and computing resources
- A temporary environment is created for the user containing the requested resources
 - Within this environment user can:
 - Allocate CPUs and disk space
 - Run existing models
 - Bring in new data, models, and algorithms
 - Extend existing models
 - Share models and data with community
 - Provide access to the results and environment
- When work is completed, the resources are recycled, but the knowledge is captured
 - The specific environment can be saved and reused
NEX Status

- **Computing**
 - Supercomputing and storage through NASA Advanced Supercomputing Division (NAS)
 - Almost 3PB storage, 80,000 CPU cores

- **Data**
 - Global MODIS, AVHRR, Landsat, GCM Scenarios, weather data, etc.

- **Models**
 - Publicly available models (ecosystem, weather, climate, hydrology)

- **Software Utilities**
 - Open source and commercial

Community (154 Members, 22 Active Research Teams)
Community modeling (Carbon)

Multi-Scale Synthesis and Terrestrial Model Intercomparison (MsTMIP)

Hosting inputs, model codes, and analysis
Climate modeling:
Warming from CO2-induced physiology

Cao et al., PNAS 2010, CCSM/CAM, workflow available on NEX
Data-driven modeling

Fluxnet, MODIS, GOES

Blending time-continuous observations from Fluxnet with spatially continuous data from satellites globally.

Yang et al., 2006 (RSE), 2007 (TGRS), 2008 (JGR)
Understanding global landscapes at high resolution
Modisizing the Landsat project

For the first time in Landsat history of nearly 30 years, we can now process and create quantitative information about changes in global landscapes, in a matter of hours.

Building virtual teams
Boston U.
Columbia U.
U of Maryland
South Dakota State U
Oregon State U

For monitoring crop growth, deforestation, and impacts of natural disasters.
Biophysical products from Landsat - Leaf Area Index
Ecological Forecasting
predicting the effects of changes in physical, chemical, and biological environment on ecosystem state and function

Terrestrial Observation and prediction system (TOPS)
A data-modeling system for integrating satellite, surface data with simulation models to produce ecological nowcasts and forecasts

Key elements:

• Monitoring
• Modeling
• Forecasting
• Local to Global

Focus on biogeochemical cycles

Nemani et al., 2009, RSE
Crop water management

Weekly composites L5 & L7

Irrigation reports
Satellite monitoring High-Resolution (1km) climate data Modeling Land cover changes

Historical

Projected

Vegetation responses to climate/land use changes

10+ teams working
Leveraging past work: using workflows

River stages of the Rio Negro near Manaus harbor

Satellite observations

2010

2005

TRMM

MODIS

Samantha et al., 2010 and Xu et al., 2011, Geophys Res. Letters
• Create a knowledge network starting with all the ES funded projects.

• Engage a larger community by lowering the barrier of entry by co-locating data, model codes, and compute resources.

• Capture research through workflows and virtual machines to create the ability to build on past work, and accelerate future scientific endeavors.

• Foster inter-disciplinary efforts.

• THINK BIG!