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MCD12Q1	
  -­‐	
  Refinements	
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  supervised	
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  completely	
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MCD12Q1	
  Refinements:	
  Land	
  Cover	
  Change	
  

What	
  is	
  nature,	
  magnitude	
  of	
  detectable	
  change?	
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  MODIS	
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Signatures	
  of	
  LC	
  Change	
  in	
  MODIS	
  

Disturbance	
  
•  How	
  does	
  area	
  of	
  land	
  cover	
  

change	
  affect	
  detecKon	
  of	
  change?	
  
•  How	
  does	
  land	
  cover	
  history	
  

(disturbance)	
  affect	
  detecKon	
  of	
  
change?	
  

•  How	
  does	
  noise	
  in	
  data	
  affect	
  
detecKon	
  of	
  change?	
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MCD12Q1	
  Summary	
  

•  Improved	
  training	
  site	
  database	
  
– Provides	
  improved	
  basis	
  for	
  mapping	
  

•  New	
  LCCS-­‐based	
  classificaKon	
  
– BeVer	
  framework	
  for	
  LC	
  mapping	
  

•  Land	
  cover	
  Kme	
  series	
  
– Explicit	
  incorporaKon	
  of	
  change	
  
– Explicit	
  definiKon	
  of	
  nature,	
  magnitude	
  of	
  changes	
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MCD12Q2	
  -­‐	
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  filling	
  (snow,	
  noise,	
  missing	
  data)	
  via	
  local	
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MCD12Q2	
  -­‐	
  Assessment	
  

absolute error (MAE) between the ExGw and each of the MODIS VI
based phenological metrics (Table 4). In general the MAE for metrics
derived from EVI and MODIS phenology data are larger than those
derived from NDVI and ExGM data. Further, both the Dolly
Sods and Smoky Look sites have slightly larger MAE values than
the Bartlett Forest and Mammoth Cave sites. Given the rapid in-
crease (spring) and decrease (autumn) in the ExGW time series for
both Smoky Look and Dolly Sods, this is expected because the 8-
day temporal sampling of MODIS is not able to capture these rapid
transitions. In contrast, dynamics in phenology at Mammoth Cave
and Bartlett Forest data are more gradual, which leads to better
fits, better correspondence between the different VI time series

and the derived phenological indicators, and by extension, lower
the MAE for both sites. (Table 4). It is interesting to note that MAE
values at the Mammoth Cave site show relatively consistent patterns
across metrics, the only exception being Gdec, which was influenced
by missing data and/or outliers in 2009. When data from 2009 are
excluded, MAE values are 4–9 and 6–16 for the NDVI and ExGM

based metrics (Table 4).

3.2. Interannual covariance among phenological indicators

Visual assessment of year-to-year covariation among phenolog-
ical metrics suggests that VI data derived from MODIS and the
cameras capture consistent patterns of interannual variation, presum-
ably attributable to climate forcing (Fig. 5). For example, at the Mam-
moth Cave site, which has the longest time series of camera data,
covariance among phenological indicators is visible in Fig. 5. In addi-
tion, the effects of early spring warming and a late frost event in
2007 are clearly evident (i.e., early onset of leaf growth, but delayed
canopy maturity), and are consistent with previous work that docu-
mented pronounced vegetation response to unusual spring weather
conditions in the central and eastern United States in 2007 (Gu et al.,
2008).

More specifically, Spearman rank correlations among the various
metrics (Table 5) vary significantly across sites. Smoky Look and
Mammoth Cave are the only sites with large proportion of significant
correlations between ExGW and the MODIS VI based metrics; specifi-
cally, metrics derived from ExGW were significantly correlated with
the timing of increase across all MODIS phenology metrics (signifi-
cant correlations ranging from ρ=0.59 to 0.78, pb0.05). Among the
metrics derived from MODIS, those based on EVI for the timing of
greenness maximum showed high positive and significant correla-
tions with the webcam data for all but the Mammoth Cave site
(ρ=0.9, 0.85 and 0.79, pb0.05 for Bartlett Forest, Smoky Look and
Dolly Sods respectively). The timing of VI decrease for the Mammoth
Cave site exhibited low to negative correlations with estimates based
on ExGW andMODIS VI data, suggesting especially high uncertainty in
the estimated dates of this phenological metric. This result is consis-
tent with the MAE values presented above. Because phenological
metrics for both greenup and senescence values are derived from
greenness increase and maximum or greenness decrease and mini-
mum, respectively, negative correlation among phenological metrics
will negatively influence test statistics. A consistent significant corre-
lation is seen for greenness increase and minimum on the Smoky
Look site; otherwise, the Dolly Sods site shows low covariance be-
tween estimated phenological indicators greenness decrease and
minimum.

3.3. Dynamics in greenup and senescence

Comparison of phenological dynamics captured by the different
VIs reveal that each VI and data source provides slightly different in-
formation related to canopy dynamics during leaf development and
senescence. Fig. 3 illustrates different responses within and between
sites, with rapid changes in both greenup and senescence captured
by the ExGW data at both Smoky Look and Dolly Sods, and more grad-
ual changes at Mammoth Cave and Bartlett Forest. Temporal dynam-
ics measured by the satellite data are more gradual. At all four sites
MODIS EVI time series show evidence of asymmetry between and
within spring and autumn periods. At the Bartlett Forest and Dolly
Sods sites, spring canopy dynamics are relatively symmetric, with
transitions located around the ~50th percentile and relatively low
BR values of 0.55 and 0.11, respectively (Table 6). Also note the
rapid development of the canopy at Bartlett Forest in 2010 due to ex-
ceptionally warm spring temperatures (Hufkens et al., 2011). Autumn
dynamics are less symmetric and are positively biased, with BR values
of 0.91, 1 and 0.83 at the Mammoth Cave, Dolly Sods and Smoky Look

Fig. 5. a–d. Phenological indicators for the Mammoth Cave National Park (Mc) site cov-
ering the complete data series (2002–2009). Greenness increase (a), maximum (b), de-
crease (c) and minimum (d) for the ExGW (red line, dot), MODIS EVI (black short
dashed line, square), MODIS NDVI (green dotted line, star) and MODIS ExGM (blue dot-
ted dashed line, cross) are shown. All values were estimated using a logistic model es-
timated by non-linear least squares. For visual comparison values from theMODIS Land
Cover Dynamics product (MCD12Q2) are also shown (orange long dashed line,
triangle).

315K. Hufkens et al. / Remote Sensing of Environment 117 (2012) 307–321
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Start	
  of	
  Spring	
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  vs	
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MCD12Q2	
  –	
  New	
  Science	
  Results	
  

Carbon	
  cost	
  associated	
  with	
  early	
  spring	
  and	
  late	
  spring	
  frosts	
  
based	
  on	
  MODIS	
  and	
  flux	
  data	
  (Hu^ens	
  et	
  al.,	
  GCB,	
  2012)	
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MCD12Q2	
  –	
  New	
  Science	
  Results	
  
48 E.K. Melaas et al. / Agricultural and Forest Meteorology 171– 172 (2013) 46– 56

Fig. 1. Example showing how spring phenology metrics were derived from CO2 time
series; flux data are indicated with black dots, and smoothing spline by solid red line;
relative GEPratio and LAI threshold dates are indicated with vertical bars; minimum
and  maximum of smoothed GEP are indicated with horizontal bars. Data are from
2004 for the FLUXNET site DE-Hai, located in Hainich, Germany. (For interpretation
of  the references to color in this figure legend, the reader is referred to the web
version of the article.)

2.2. Spring phenology models

Most models that are used to simulate phenology in temperate
and boreal ecosystems assume that leaf development is primarily
regulated by air temperature and can be modeled using cumu-
lative thermal units (heating or chilling degree days) above or
below a prescribed reference heating or chilling temperature: Tf
or Tc, respectively (Hänninen and Kramer, 2007). The simplest
models only consider heating temperatures accumulated after a
fixed date (e.g., January 1), and are designed to predict the date
of specific phenophases such as budburst (e.g., the Spring Warm-
ing model; Hunter and Lechowicz, 1992). More complex models
also consider the effect of chilling temperatures, which some stud-
ies have suggested control spring phenology in combination with
cumulative heating. This family of models includes the Parallel
model (Landsberg, 1974; Hänninen, 1990), the Sequential model
(Hänninen, 1990; Cesaraccio et al., 2004), and the Alternating
model (Murray et al., 1989).

In this paper we test 11 different models that use thermal heat-
ing or combined thermal chilling and heating to predict the timing
of spring onset of photosynthetic activity. Each model is based on
one of three functional forms in which spring onset is predicted
to occur when the state of forcing (Sf(t)) reaches a critical sum of
heating units (F*).

In the “Spring Warming 1” model (SW1), the rate of accumulated
heating is linearly related to air temperature:

Sf (t) =
tpheno∑

p0

max(Tair − Tf , 0) (1)

where Tair is daily mean air temperature, p0 is the starting photope-
riod when heating is prescribed to begin accumulating, and tpheno
is the date of spring onset when Sf (t) ≥ F∗. In the “Spring Warming
2” model (SW2), accumulated heating is related to air temperature
using a logistic function (Sarvas, 1974):

Sf (t) =
tpheno∑

p0

max
[ 28.4

1 + exp(−0.185(Tair − 18.4))
, 0
]

(2)

Finally, the Sequential model (SEQ1) assumes that heating accu-
mulation (using Eq. (1))  does not occur until a critical sum of chilling
units (C*) is reached, and where the state of chilling (Sc(t)) increases
only after the daily mean air temperature falls below a prescribed
temperature threshold:

Sc(t) =
t1∑

p0

(
1 Tair < Tc

0 Tair ≥ Tc

)
(3)

where t1 is the date when chilling requirements are met  and heat-
ing accumulation begins.

Variants of these three basic model forms have been widely
used to predict leaf phenology and detailed descriptions for
each approach are presented elsewhere (e.g., Chuine et al., 1999;
Richardson and O’Keefe, 2009). Here we test 11 different models
based on these basic model forms using implementations that are
slightly different from previous efforts (Table 1). Specifically, previ-
ous efforts initiate accumulation of chilling or heating requirements
based on a prescribed date (t0). In the models we test here, accu-
mulation is instead initiated based on a photoperiod trigger (p0).
This is functionally equivalent to allowing t0 to vary with latitude.
For the spring warming models (SW1 and SW2), if the minimum
photoperiod at a given site is always greater than p0, accumulation
is prescribed to begin on December 21. Similarly, for the chilling
models (i.e., SEQ1), if minimum p0 is never reached, we  prescribe
accumulation to begin on September 21. These dates were selected
because December 21 has the shortest day length in the Northern

Table 1
Growing degree-day models and their associated parameters.

Model Parametersa

Thermal base temperature Chilling base temperature Required thermal forcing Required chilling forcing Minimum photoperiod

SW1.1 Tf F* p0

SW1.2 Tf = ax + b F* p0

SW1.3 Tf F* = ax + b p0

SW1.4 Tf = ax + b F* = cx + d p0

SW2.1 F* p0

SW2.2 F* = ax + b p0

SEQ1.1 Tf Tc F* C* p0

SEQ1.2 Tf = ax + b Tc = cx + d F* C* p0

SEQ1.3 Tf Tc F* = ax + b C* p0

SEQ1.4 Tf Tc F* C* = ax + b p0

SEQ1.5 Tf = ax + b Tc = cx + d F* = ex + f C* = gx + h p0

a The variable ‘x’ is a vector of long-term mean annual temperatures of each site within each vegetation grouping. Parameter definitions are described in more detail in
Appendix A.

Comparison	
  of	
  Photosynthe.c	
  Start	
  of	
  Spring	
  from	
  Eddy	
  
Covariance	
  vs	
  MCD12Q2	
  (Melaas	
  et	
  al.,	
  AFM,	
  2013)	
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MCD12Q2	
  –	
  New	
  Science	
  Results	
  

Significant	
  informaKon	
  in	
  phenology	
  related	
  
to	
  crop	
  yields.	
  	
  Upper	
  le`	
  shows	
  study	
  region	
  
composed	
  of	
  major	
  corn	
  (le`)	
  and	
  soybean	
  
(right)	
  producKon	
  counKes	
  in	
  US.	
  	
  Upper	
  right	
  
shows	
  correlaKon	
  between	
  “phenologically-­‐
adjusted”	
  vegetaKon	
  indices	
  and	
  yield.	
  	
  Lower	
  
le`	
  plots	
  yield	
  2005	
  anomalies	
  versus	
  
predicted	
  anomalies	
  from	
  MODIS.	
  

Bolton	
  and	
  Friedl,	
  AFM	
  (2013)	
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MCD12Q2	
  -­‐	
  Summary	
  

•  Revised	
  funcKonal	
  model	
  for	
  phenology	
  
– Reduces	
  bias	
  in	
  product	
  

•  Improved	
  treatment	
  for	
  noise,	
  missing	
  data	
  
– Reduces	
  noise	
  in	
  product	
  

•  Extensive	
  assessment	
  and	
  validaKon	
  
– Feeding	
  back	
  into	
  algorithm	
  revisions	
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