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Why look at IOPs?
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Chl is the historical OC product

Routinely measured at sea

Primary Production

Proxy for phytoplankton biomass

Easy to empirically derive from reflectance (Rrs ratio = Chl)

Chl is the OC product with the most
complete validation
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Several issues with Chl:
 The C/Chl ratio is not constant

e Chlis not directly related to reflectance

* Phytoplankton (=Chl) is only one of the
components that determine the ocean
color signal




Contribution to Spectral Absorption

Mean Absorption Component Spectra
(Open Ocean, consistently sampled and processed)
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Global surface measurements (18/19, A20/A22, P16N/P16S, P18, BATS; N = 371)
US Global Ocean Carbon & Repeat Hydrography Cruises.

CDOM absorption frequently dominates absorption in the blue



Chl and the band ratio algorithm

MODIS operational Chl: Maximum Band Ratio
algorithm (MBR)
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Semi-analytic OC models can account for CDOM and Chl

For example, the GSM model (Garver & Siegel, 1997; Maritorena et al., 2002) simultaneously
retrieves three relevant properties: Chl, CDM [a_y,,(443)+a.(443)] & BBP [b,,,(443)]
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Oegm(A) = Ay, (443) exp(-S(A — 443))

b, (A) = b, (443) (A/443)"

Non-water components of absorption and
scattering are expressed as known shape

a,(A)+a,(A) +a

functions with unknown magnitudes
which are retrieved through non-linear

least-squares fitting.

Validation statistics for Chlg,, with in situ
data are as good as for Chl,;z and almost

as good with satellite data.
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Comparison of MBR Chl and GSM Chl and influence of CDOM
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Correlation
Chl vs SST
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Regional-scale correlation between Chl and SST in the Tropical ocean is

almost identical

Mission trends show same spatial patterns but different magnitudes

Siegel et al., in Press RSE



So...

It's worth looking at IOPs for the purpose of correcting the Chl estimates from empirical ratio
algorithms (or generate a Chl estimate from the 10Ps)

Another good reason to look at IOPs is because they provide links to biogeochemistry

Phytoplankton absorption:
Pigment composition
Community structure
Physiology

CDM (non-algal) absorption:
Photochemistry
Correct empirical Chl retrievals

Particulate backscattering:
Particle Size Distribution (size index)
Primary Production
POC, PIC

bbp slope; Loisel et al., 2006
Phytoplankton size; Mouw & Yoder, 2010

PSD; Kostadinov et al., 2009
NPP; Behrenfeld et al., 2005



Where are we at with IOP algorithms and products?

Several IOP products are available through the NASA OBPG ocean color web:
- Agm(443), a,,(443), b,,,(443) from different models
- IOPs are not “standard” products, they are “evaluation” products

Several workshops and evaluation exercises for IOP products and algorithms:
SeaBAM, 1996
OCBAM, 2005
IOCCG, 2005
NASA IOP Workshops, 2008, 2010
ESA CCl, 2013



The NASA OBPG IOP algorithms Workshops (2008, 2010)

Goal was mostly to look under the hood of 7 IOP algorithms to interpret their
differences and assess their suitability for global application

Since SA algorithms are all based on the same fundamental relationship between Rrs
and IOPs, the differences among them come from their overall design

— Assumptions

— Parameterization of the absorption and backscattering components

— Inversion or optimization approach

Seven |OP algorithms were tested against the NOMAD in situ data set and some
satellite data

NASA OBPG developed the generalized IOP (GIOP) model software which allows the
user to choose the parameterization and inversion method of a SA ocean color
model.

Generalized ocean color inversion model for retrieving
marine inherent optical properties
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ESA OC-CCI round-robin

Aim is to establish an objective methodology for OC algorithm selection based on
performance and suitability for use in climate-change studies.

Table 2: Model output variables.

Model Output variable Reference .
Ka@89) € al)  ap()  ag) by y  Sag  ap(555)/apd43) > 29 variables
A x* x5 x x X x x X x Smyth et al. (2006) 2
B x* x5 x X X X X X X Smyth et al. (2006)
C x* X X X X X X X X Devred et al. (2011)
D x* X X X X X X X X Lee et al. (2002)
E x* x3 x x X X x X X Lee et al. (2009)
F Xt x5 x x x x  x x x Lee et al. (1998, 1999) 11 semi-analytical algorithms
G x* X X X X X X X X Maritorena et al. (2002)
H x* X X X X X X X X Maritorena et al. (2002) (lOPS; Chl; Kd (490))
1 x* X X X X X X X X Franz and Werdell (2010)
J x* X X x X X % X see”
K x* X X X X X X X X Doerffer and Schiller (2000)
L x O’Reilly et al. (2000) ?
M X O’Reilly et al. (2000)
N X O’Reilly et al. (2000) H H
o ) el ot o 200 6 empirical algorithms (Chl)
P X Hu et al. (2012)
Q x NASA (2009)

Tested with the NOMAD in situ data set

Developed an objective classification designed to rank the quantitative performance of the models
based on various univariate statistics.
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The Ocean Colour Climate Change Initiative: A round-robin
comparison on in-water bio-optical algorithms
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ESA OC-CCI

Brewin et al.,,RSE In Press



OC-CCIl and NASA IOP Workshops Main Conclusions

Brewin et al.,RSE In Press

No perfect algorithm that does it all at all
wavelengths

The performance of each model varies
depending on product and wavelength

Most semi-analytic models perform well in
predicting total absorption, a,(A), and total
backscattering, b,(A)

Performance is generally degraded when
decomposing &, into a,, and a.,,

Difficult to rank the performance of the
algorithms, as many of the models have
overlapping error bars.

Issues with the in situ data:

No independent data set for model testing
Time and space biases

Mesotrophic waters are over-represented
Need measurement uncertainty
quantification (closure issues)



Summary

|OPs are important for ocean biogeochemistry studies
|OPs are not “Standard” (= operational) products, they are
“Evaluation” products

It’s probably time for some of them to become “Standard”
products

No “perfect” IOP algorithm or model

There is room for improvement in terms of products and
spectral accuracy

Need more diverse and high quality in situ data






Can we improve the |IOP models?

t f(A) b,,(A)+ b, (A)

Rrs(A) =
=15 o0 a,(A) +a,,(A) + a4, (A) + by, (A)+ by (A)

cdm

an(A) = AN ChIBN  a . (\) = a, (443) exp(-S(A-443)) by (A) = b, (443) (A /443)"

cdm

- Replace some constant parameters by dynamic expressions (e.g. t/n 2 f/Q, S, n).

- Improve phytoplankton absorption parameterization through better, bigger,
more diverse data sets

Challenges:
Highly non-linear
Dynamic parameterization is not always obvious
Still some empiricism
What is best?
- High accuracy at 1 A vs a lower but consistent accuracy at all As?
- High accuracy for some products but lower accuracy for some others?
- High accuracy retrievals but poor spatial and temporal coverage (filtering)



